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a b s t r a c t

In this paper, we proved the following result: Let G be a (k + 2)-connected, non-(k − 3)-
apex graph where k ≥ 2. If G contains three k-cliques, say L1, L2, L3, such that |Li ∩ Lj| ≤
k − 2(1 ≤ i < j ≤ 3), then G contains a Kk+2 as a minor. Note that a graph G is t-apex if
G− X is planar for some subset X ⊆ V (G) of order at most t .
This theorem generalizes some earlier results by Robertson, Seymour and Thomas

[N. Robertson, P.D. Seymour, R. Thomas, Hadwiger conjecture for K6-free graphs,
Combinatorica 13 (1993) 279–361.], Kawarabayashi and Toft [K. Kawarabayashi, B. Toft,
Any 7-chromatic graph has K7 or K4,4 as a minor, Combinatorica 25 (2005) 327–353]
and Kawarabayashi, Luo, Niu and Zhang [K. Kawarabayashi, R. Luo, J. Niu, C.-Q. Zhang,
On structure of k-connected graphs without Kk-minor, Europ. J. Combinatorics 26 (2005)
293–308].

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Hadwiger’s Conjecture from 1943 suggests a far reaching generalization of the Four Color Problem, and it is one of the
most famous problems in the theory of graph minors. Hadwiger’s Conjecture states the following.

Conjecture 1.1 (Hadwiger [6]). For all k ≥ 1, every k-chromatic graph has the complete graph Kk on k vertices as a minor.

For k = 1, 2, 3, this conjecture is easy to prove, and for k = 4, Hadwiger himself [6] and Dirac [5] proved it. For k = 5,
however, it seems extremely difficult. In 1937, Wagner [20] proved that the case k = 5 is equivalent to the Four Color
Theorem [1,2,14]. In 1993, Robertson, Seymour and Thomas [15] proved that a minimal counterexample to the case k = 6
is a graph G which has a vertex v such that G − v is planar. Hence, assuming the Four Color Theorem, the case k = 6 of
Hadwiger’s Conjecture holds. This result is the deepest in this research area. So far, the cases k ≥ 7 are open.
The following question is motivated by Hadwiger’s Conjecture.

Question 1.2. Is it true that a minimal counterexample to Hadwiger’s Conjecture for k ≥ 6 has a set X of k − 5 vertices such
that G− X is planar?

This is true for k = 6 as Robertson, Seymour and Thomas [15] showed. To consider aminimal counterexample to Hadwiger’s
Conjecture, one may try to prove the following conjecture.

Conjecture 1.3. A minimal counterexample to Hadwiger’s Conjecture is k-connected.

This is true for k ≤ 7 as Mader proved in [11]. Note that Toft [19] proved that a minimal counterexample to Hadwiger’s
Conjecture is k-edge-connected. This is a strong evidence for Conjecture 1.3.
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Question 1.2 and Conjecture 1.3 lead us to the following question.

Question 1.4. Is it true that a Kk-minor-free k-connected graph for k ≥ 6 has a set X of k−5 vertices such that G−X is planar?

The case k = 6 is a well-known conjecture due to Jorgensen [7], and still open. If true, this would imply Hadwiger’s
Conjecture for the k = 6 case by Mader’s result [12]. The case k = 7 was conjectured in [10] as well.
Even though the case k = 6 of Question 1.4 is still open, Robertson, Seymour and Thomas [15] gave a result for searching

for a K6-minor.

Theorem 1.5 (Robertson, Seymour and Thomas [15]). Let G be a simple6-connected non-apex graph. If G contains three4-cliques,
say, L1, L2, L3, such that |Li ∩ Lj| ≤ 2 (1 ≤ i < j ≤ 3), then G contains a K6 as a minor.

In 2005, Kawarabayashi and Toft [10] proved the following theorem.

Theorem 1.6 (Kawarabayashi and Toft [10]). Any 7-chromatic graph has K7 or K4,4 as a minor.

This settles the case (6, 1) of the following conjecture known as the (k − 1, 1)-Minor Conjecture, which is a relaxed
version of Hadwiger’s Conjecture.

Conjecture 1.7 (Chartrand, Geller, Hedetniemi [3]; Woodall [21]). For all k ≥ 1, every k-chromatic graph has either a Kk-minor
or a K

b
k+1
2 c,d

k+1
2 e
-minor.

In [10], the following result is the key lemma, which gives a result for searching for a K7-minor.

Theorem 1.8 (Kawarabayashi and Toft [10]). Let G be a 7-connected graph. Suppose G contains three 5-cliques, say, L1, L2, L3,
such that |L1 ∪ L2 ∪ L3| ≥ 12, then G contains a K7-minor.

In 2005, Kawarabayashi, Luo, Niu and Zhang [9] proved the following theorem.

Theorem 1.9 (Kawarabayashi, Luo, Niu and Zhang [9]). Let G be a (k + 2)-connected graph where k ≥ 5. If G contains three
k-cliques, say L1, L2, L3, such that |L1 ∪ L2 ∪ L3| ≥ 3k− 3, then G contains a Kk+2 as a minor.

Our work is motivated by Theorem 1.5, and the main result of this paper is the following theorem which generalizes
Theorems 1.5, 1.8 and 1.9.

Theorem 1.10. Let G be a (k+ 2)-connected, non-(k− 3)-apex graph where k ≥ 2. If G contains three k-cliques, say L1, L2, L3,
such that |Li ∩ Lj| ≤ k− 2(1 ≤ i < j ≤ 3), then G contains a Kk+2 as a minor.

Theorem 1.10, which generalizes Theorems 1.5, 1.8 and 1.9, implies that a (k + 2)-connected Kk+2-minor-free graph
cannot contain three ‘‘nearly’’ disjoint k-cliques.
A remark about the extreme case in Theorem 1.10: (k − 3)-apex graph: a (k + 2)-connected graph may contain many

copies of k-clique, but not necessarily a Kk+2-minor. For example, the graph G = Kk−3+G1, where G1 is a 5-connected planar
graph, is obviously Kk+2-minor-free and containsmany copies of k-clique, many pairs of which overlapwith each other with
only (k− 3) vertices (in Kk−3).
We hope our result could be used to prove some results on 7- and 8-chromatic graphs. In fact, in [8], Kawarabayashi

proved that any 7-chromatic graph has K7 or K3,5 as a minor by applying Theorem 1.9. We expect that Theorem 1.10 would
be useful in the proofs of some h-chromatic cases of Conjecture 1.1 or Conjecture 1.7 for some larger integers h. Note that
Theorem 1.9 would imply the 7-chromatic case of Hadwiger’s Conjecture (Conjecture 1.1) if one could find three copies of
5-clique not to overlap too much with each other, since Mader proved that the connectivity of such a counterexample is at
least 7 [11].
The following was conjectured by Seymour and Thomas.

Conjecture 1.11. For every p ≥ 1, there exists a constant N = N(p) such that every (p− 2)-connected graph on n ≥ N vertices
and at least (p− 2)n− (p−1)(p−2)

2 + 1 edges has a Kp-minor.

Note that the connectivity condition and the condition of the order of graphs are necessary because random graphs
having no Kk-minormay have average degree k

√
log k, but all these graphs are small. So if a graph is large enough and highly

connected, we do not know any construction of infinite family of counterexamples. This conjecture is true for p ≤ 9. For
p ≤ 7, these conjecture was proved by Mader [11]. For p = 8, Jorgensen [7] proved it. Very recently, Song and Thomas [17]
proved the case p = 9. Note that all of these results do not require the connectivity condition in this conjecture.
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2. Terminology and notations

All graphs considered in this paper are finite, undirected, and without loops or multiple edges. The complete graph (or,
clique, as a subgraph) on n vertices is denoted by Kn and the complete bipartite graph such that one partite set has n vertices
and the other partite set hasm vertices is denoted by Kn,m.
A graph H is aminor of a graph G if H can be obtained from G by deleting edges and vertices and contracting edges.
For a vertex x of a subgraph H1 of G, the neighborhood of x in H1 is denoted by NH1(x). And, for a vertex v ∈ V (G) and a

vertex subset (or a subgraph) Y of G, dY (x) = |{v ∈ Y : xv ∈ E(G)}|. A graph G is k-chromatic if G is vertex-k-colorable but
not vertex-(k− 1)-colorable. Let V1 and V2 be subsets of V (G). The symmetric difference of V1 and V2, denoted by V1∆V2, is
the set (V1 ∪ V2)− (V1 ∩ V2).
Let us say a graph G is k-apex if G− X is planar for some subset X ⊆ V (G) with |X | ≤ k. By the definition, if k ≤ 0, then

a k-apex is planar. (For technical reason, a k-apex with negative k is mentioned sometime in this paper. Note that, there is
no subset X with negative order. Hence, a k-apex with k < 0 is actually a planar graph: since G is already planar after the
deletion of a subset X that does not exit.) Furthermore, (a) for k ≥ 1, a graph G is non-k-apex if G− X is not planar for every
subset X ⊆ V (G) with |X | ≤ k; (b) for k = 0, a graph G is non-k-apex if G itself is not planar; (c) for k < 0, a non-k-apex
graph is either planar or non-planar. (Similar as above, for a graph G to be a non-k-apexwith k < 0, it is necessary that there
is a subset X of order at least 0 such that G− X is planar.)
A subset X ⊆ V (G) is a fragment of G if X 6= ∅ and X induces a connected subgraph of G. Subsets X, Y ⊆ V (G) are adjacent

in G if X ∩ Y = ∅ and some x ∈ X is adjacent in G to some y ∈ Y .
A cluster in G is a set of mutually adjacent fragments G, and it is a p-cluster if it has cardinality p. Thus G has a Kp-minor

if and only if it has a p-cluster. Given a subset Y ⊆ V (G), a p-cluster℘ is said to traverse Y if ℘ = {X1, X2, . . . , Xp} in such a
way that Xi ∩ Y 6= ∅ (1 ≤ i ≤ p).
Let v1, v2, v3 be mutually adjacent vertices of a graph G. We say G is triangular with respect to v1, v2, v3 if G is simple and

either
(i) for some i (1 ≤ i ≤ 3), G− vi has maximum degree at most 2, and either G− vi is a cycle or it has no cycle, or
(ii) all vertices ofG have degree atmost 3, there is atmost one vertex v of degree 3with v 6= v1, v2, v3, andG−v1−v2−v3

has no cycle, or
(iii) all vertices of G have degree at most 3, there is a triangle C in G − v1 − v2 − v3, every vertex of degree 3 is in

{v1, v2, v3} ∪ V (C), and every cycle except for the two triangles {v1, v2, v3} and C contains both a vertex in {v1, v2, v3} and
V (C).

3. Lemmas

3.1. Good paths

One of the key lemmas in our proof is Mader’s ‘‘H-Wege’’ Theorem, which was proved in [13].

Lemma 3.1 (Mader [13]). Let G be a graph, let S ⊆ V (G) be an independent set, and k ≥ 0 be an integer. Then exactly one of the
following two statements holds.

(1) There are k paths of G, each with two distinct ends both in S, such that each v ∈ V (G)− S is in at most one of the paths.
(2) There exists a vertex set W ⊆ V (G) − S and a partition Y1, . . . , Yn of V (G) − (S ∪W ), and a subset Xi ⊆ Yi, 1 ≤ i ≤ n,
such that
(a) |W | +

∑
1≤i≤nb

1
2 |Xi|c < k,

(b) no vertex in Yi − Xi has a neighbor in V (G)− (W ∪ Yi) and,
(c) every path of G−W with distinct ends both in S has an edge with both ends in Yi for some i.

Let Z1, Z2, . . . , Zh be subsets of V (G). A path P ofGwith ends u, v is said to be good if there exist distinct i, jwith 1 ≤ i, j ≤ h
such that u ∈ Zi and v ∈ Zj.
As Robertson, Seymour and Thomas pointed out in [15], we can deduce the following lemma from Lemma 3.1.

Lemma 3.2 (Robertson, Seymour and Thomas [15]). Let G be a graph, let Z1, Z2, . . . , Zh be subsets of V (G), and let k ≥ 1 be an
integer. Then exactly one of the following two statements holds.

(1) There are k mutually disjoint good paths of G.
(2) There exists a vertex set W ⊆ V (G) and a partition Y1, . . . , Yn of V (G)−W, and a subset Xi ⊆ Yi, for 1 ≤ i ≤ n such that
(a) |W | +

∑
1≤i≤nb

1
2 |Xi|c < k,

(b) for any i with 1 ≤ i ≤ n, no vertex in Yi − Xi has a neighbor in V (G)− (W ∪ Yi) and Yi ∩ (∪hj=1 Zj) ⊆ Xi, and
(c) every good path P in G−W has an edge with both ends in Yi for some i.
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3.2. Cluster

Lemma 3.3 (Robertson, Seymour and Thomas [15], page 291). Let v1, v2, v3 be mutually adjacent vertices of a 4-connected
simple non-planar graph G. Let = ⊆ V (G) with v1, v2, v3 ∈ = such that = is not triangular. Then there is a 5-cluster
℘ = {{v1}, {v2}, {v3}, X1, X2} in G such that ℘ traverses =.

The following lemma is an immediate corollary of a result by Robertson, Seymour and Thomas in [15] (page 288).

Lemma 3.4. Let G be a 4-connected graph and = ⊆ V (G) with |=| = 4. Then either
(i) there is a 4-cluster in G traversing =, or
(ii) G can be drawn in a plane so that every vertex in = is incident with the infinite region.

3.3. The 6-cluster lemma

The following lemma deals with an extreme case of our main theorem. Since the proof of the lemma is relatively long
and complicated, we present it here as an independent lemma and its proof in Section 5. Readers may postpone the reading
of the proof of Lemma 3.5 until after the proof of the main theorem.

Lemma 3.5. Let xi, yi, zi (1 ≤ i ≤ 3) be distinct vertices of a 6-connected simple graphG, such that {x1, y1, z2, z3}, {x2, y2, z3, z1},
{x3, y3, z1, z2} are 4-cliques. Suppose, that there is a partition Y1, Y2 of V (G)−{z1, z2, z3}with x1, x2, x3 ∈ Y1, and y1, y2, y3 ∈ Y2,
such that xiyi (1 ≤ i ≤ 3) are the only edges of G with one end in Y1 and the other in Y2. Then G has a 6-cluster traversing
{x1, y1, z1, x2, y2, z2, x3, y3, z3}.

Note that, Robertson, Seymour and Thomas gave a result in page 293 of [15] similar to Lemma 3.5. However, in order
to obtain a sharper and more general result in our main theorems (Theorems 1.10 and 4.1), we need a stronger result in
Lemma 3.5 (for 6-cluster instead of 6-minor), which is approached differently from that in [15].

4. Proof of the main theorem

The main theorem (Theorem 1.10) is to be proved in this section. Here we prove a theorem that is slightly stronger than
the main theorem (Theorem 1.10).

Theorem 4.1. Let G be a (k + 2)-connected, non-(k − 3)-apex graph where k ≥ 2. If G contains three k-cliques, say L1, L2, L3,
such that |Li ∩ Lj| ≤ k− 2(1 ≤ i < j ≤ 3), then one of the following holds,
(1) G contains a (k+ 2)-cluster traversing L1 ∪ L2 ∪ L3, or
(2) (an exceptional case) |T | = k− 2 where T = L1 ∩ L2 ∩ L3, and G− T is a planar graph with all edges in Li − T (i = 1, 2, 3)
around the exterior face. In this case, G contains a (k+ 2)-cluster{{v1}, . . . , {vk}, B, I} where L1 = {v1, . . . , vk}, B is the set
of all vertices of G− T around the exterior face except for those in L1, and I is the set of all interior vertices of G− T .

Note: readers might be confused by a non-(k−3)-apex graph if k = 2. Recall that a graph H is a non-t-apex if G−R is planar
for some vertex subset R, then Rmust be of order at least t+1. Hence, a non-(k−3)-apex graph for k = 2 can be any graph,
planar or non-planar.
Proof. Let G be a counterexample to the theorem with k as small as possible.

4.1. We claim that k ≥ 3

For otherwise, we may assume k = 2, G is 4-connected graph, and G contains three disjoint 2-cliques, say L1, L2, L3.
Since L1 and L2 are disjoint 2-cliques, |L1 ∪ L2| = 4. Note that G is 4-connected, by Lemma 3.4. There are two cases:
(1) There is a 4-cluster in G traversing L1 ∪ L2. In this case, by the definition of cluster, this 4-cluster in G also traverses

L1 ∪ L2 ∪ L3, a contradiction, hence we are done.
(2) G can be drawn in a plane so that every vertex in L1 ∪ L2 is incident with the infinite region. In this case, since G is

4-connected, the edges of L1 and L2 must be around the exterior face. If one vertex v1 of L3 is not incident with the infinite
region, then there are four internal vertex-disjoint paths from v1 to L1 ∪ L2, hence we get a 4-cluster traversing L1 ∪ L2 ∪ L3,
a contradiction. Therefore two vertices of L3 must be incident with the infinite region. Note that G is 4-connected, G has a
4-cluster {{v1}, {v2}, B, I}where L1 = {v1, v2}, B is the set of all vertices of G around the exterior face except for those in L1,
and I is the set of all interior vertices of G (it is easy to see that I and B both are connected), a contradiction. �

4.2. We claim that |L1 ∩ L2 ∩ L3| = 0

For otherwise, we assume |L1 ∩ L2 ∩ L3| 6= 0. Let x ∈ L1 ∩ L2 ∩ L3 and G′ = G − {x}, then G′ is a (k + 1)-connected
non-(k− 4)-apex graph. By minimality of k, there are two cases:
Case (1): There is a (k+ 1)-cluster℘1 of G− {x} traversing L1 ∪ L2 ∪ L3− {x}. Let℘ = ℘1 ∪ {{x}}, then℘ is a (k+ 2)-cluster
traversing L1 ∪ L2 ∪ L3, a contradiction.
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Case (2): |T ′| = k− 3 where T ′ = (L1 ∩ L2 ∩ L3)− {x}, and G′ − T ′ is a planar graph with all edges of (Li − {x})− T ′ around
the exterior face. G′ contains a (k+ 1)-cluster ℘ ′ = {{v1}, . . . , {vk−1}, B, I}where {x, v1, . . . , vk−1} = L1 and B is the set of
all vertices of G′ − T ′ around the exterior face except for those in L1, and I is the set of all interior vertices of G′ − T ′.
In order to show that ℘ = {{x}, {v1}, . . . , {vk−1}, B, I} is a (k+ 2)-cluster of G, it is sufficient to prove that x is adjacent

to every other fragment. (i) it is obvious that vi ∈ N(x) since x ∈ L1; (ii) it is similar that N(x) ∩ B 6= ∅ since x ∈ L2 and
L2 ∩ B 6= ∅; (iii) N(x) ∩ I 6= ∅ for otherwise, the vertex x can be embedded into the exterior face of G′ − T ′ and therefore,
G− T ′ is planar. This contradicts that G is non-(k− 3)-apex.

4.3. We claim that k ≥ 4

For otherwise, by (4.1), we may assume k = 3. That is, G is a 5-connected non-planar graph, and G contains three 3-
cliques, say L1, L2, L3, such that |Li ∩ Lj| ≤ 1(1 ≤ i < j ≤ 3). By (4.2), we have |L1 ∩ L2 ∩ L3| = 0.
Let Z = L1 ∪ L2 ∪ L3 and v1, v2, v3 ∈ L1. Then Z is not triangular with respect to v1, v2, v3. By Lemma 3.3, there is a

5-cluster ℘ in G such that ℘ traverses Z . �

4.4. We claim that |Li ∩ Lj| ≤ 1 for 1 ≤ i < j ≤ 3

For otherwise, wemay assume |L1∩L2| ≥ 2. Let B ⊆ L1∩L2 with |B| = 2. By (4.2), B∩L3 = ∅ since L1∩L2∩L3 = ∅. Since
G−B is k-connected, there exist k disjoint paths from L3 to L1∪L2−B. Let x, y ∈ B and P1, P2, . . . , Pk be a set of disjoint paths
from L3 to L1 ∪ L2 − B. Then ℘ = {P1, P2, . . . , Pk, x, y} is a (k+ 2)-cluster that traverses L1 ∪ L2 ∪ L3, a contradiction. �

4.5. A path P of G with ends u, v is said to be good if there exist distinct i, j with 1 ≤ i, j ≤ 3 such that u ∈ Li and v ∈ Lj

4.6. We claim that there do not exist (k+ 2)mutually disjoint good paths in G

Let P1, P2, . . . , Pk+2 be a set of disjoint good paths of G. Then ℘ = {P1, P2, . . . , Pk+2} is a (k + 2)-cluster that traverse
L1 ∪ L2 ∪ L3. �
By Lemma 3.2 and (4.6), we have the following structure of G:

4.7. There exists a vertex set W ⊆ V (G) and a partition Y1, . . . , Yn of V (G)−W, and a subset Xi ⊆ Yi, for 1 ≤ i ≤ n such that

(a) |W | +
∑
1≤i≤nb

1
2 |Xi|c ≤ k+ 1,

(b) for any iwith 1 ≤ i ≤ n, no vertex in Yi − Xi has a neighbor in V (G)− (W ∪ Yi) and Yi ∩ (∪3j=1 Lj) ⊆ Xi, and
(c) every good path P in G−W has an edge with both ends in Yi for some i.

Let M = (L1 ∩ L2) ∪ (L2 ∩ L3) ∪ (L3 ∩ L1), and choose W and Y1, X1, . . . , Yn, Xn such that |W | is as large as possible.
Without loss of generality, we can assume that Yi 6= ∅ for any i ∈ {1, 2, . . . , n}. By the definition ofW , M and (4.7)(c), we
have the following immediate observations:

4.8

(a) M ⊆ W by (4.7)(c).
(b) |L1 ∪ L2 ∪ L3| = |L1| + |L2| + |L3| − |M| by definition ofM and (4.2).
(c) |M| ≤ 3 by (4.2 and 4.4).
(d) |Li ∪ Lj| > k+ 2 for 1 ≤ i < j ≤ 3.
(4.8)(d) is proved as follows: by (4.4) and k ≥ 4 (by (4.3))

|Li ∪ Lj| = |Li| + |Lj| − |Li ∩ Lj| = 2k− 1 > k+ 2.

The following claim (e) follows from assumption (4.7)(b).
(e) W ∪ X1 ∪ · · · ∪ Xn ⊇ L1 ∪ L2 ∪ L3, and |W | +

∑n
i=1 |Xi| ≥ |L1 ∪ L2 ∪ L3|.

4.9. We claim that Xi 6= ∅ for all i

Suppose that Xi = ∅ for some i. Since |W | ≤ k+ 1 (by (4.7)(a)) and |L1 ∪ L2 ∪ L3| ≥ |L1 ∪ L2| ≥ k+ 2 (by (4.8)(d), there
is an integer j (j 6= i) such that Xj 6= ∅ (by (4.8)(e)). Hence n ≥ 2. Since Yi is not empty,W is a cutset that separates Yi and
non-empty Xj and is of cardinality at most k+ 1. This contradicts that G is (k+ 2)-connected.

4.10. We claim that |Xi| is odd for all i

Suppose that |X1| is even, then by (4.9), |X1| ≥ 2. Let v ∈ X1,W ∗ = W ∪ {v}, Y ∗1 = Y1 − v, X
∗

1 = X1 − v and X
∗

i = Xi,
Y ∗i = Yi for 2 ≤ i ≤ n. The partition {W

∗, X∗1 , . . . , X
∗
n , Y

∗

1 , . . . , Y
∗
n } of V (G) satisfies (4.7)(a)–(c), contradicting the choice

that |W | is as large as possible.
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4.11. We claim that

(a) n ≥ k− 2
(b) if n = k− 2 then

|W | = |M| and W ∪ X1 ∪ X2 ∪ · · · ∪ Xn = L1 ∪ L2 ∪ L3.

Since |L1 ∪ L2 ∪ L3| ≥ |L1 ∪ L2| ≥ k + 2 (by (4.8)(d)) and |W | ≤ k + 1 (by (4.7)(a)), we have n ≥ 1. By (4.7)(a), (4.8)(a)
and (4.8)(b), we have

2(k+ 1) ≥ 2

(
|W | +

∑
1≤i≤n

b
1
2
|Xi|c

)
= 2|W | +

∑
1≤i≤n

|Xi| − n

≥ |W | + |L1 ∪ L2 ∪ L3| − n ≥ |M| + |L1 ∪ L2 ∪ L3| − n
= |L1| + |L2| + |L3| − n = 3k− n.

Thus,

n ≥ k− 2

and if n = k− 2, then all equalities hold and therefore,

|W | = |M| and |W | +
∑
1≤i≤n

|Xi| = |L1 ∪ L2 ∪ L3|.

4.12. Definition of Ai (for i = 1, 2, 3)

Let G′′ be the subgraph obtained from G −W by deleting all edges contained in any Yj. Let Ai be the union of the vertex
subsets of all components of G′′ containing some vertex of Li for each i ∈ {1, 2, 3}.

4.13. Properties of {A1, A2, A3}

Properties of {A1, A2, A3} are to be studied in this subsection. The first property is immediate by (4.7) and the definition
of Ai.
(a) Li −W ⊆ Ai ⊆ V (G)−W for i = 1, 2, 3.

Note that each Yj − Xj is an independent set of G′′, and by (4.7)(b), we have the following properties.
(b) Ai ⊆ X1 ∪ · · · ∪ Xn for i = 1, 2, 3.
(c) A1, A2, A3 are disjoint by the definition of Ai and (4.7)(c).
(d) Every path of G−W from Ai to Ai∗ (for 1 ≤ i < i∗ ≤ 3) has at least two vertices in Xj for some j.

Proof of (d). Suppose there exists a path P from v ∈ A1 to u ∈ A2 in G −W . By the definition of A1, A2, we can take
two disjoint paths Q and R such that Q is a path from some vertex x ∈ L1 to v in G[A1] and R is a path from some vertex
y ∈ L2 to u in G[A2]. Both Q and R have no edges with both ends in Yj for any j by definition of Ai. Then we have a path S
from x to y by using Q , P , R. Since S is a good path by (4.7)(c), S has an edge e = x1y1 ∈ Yj for some j. Note that e 6∈ E(Q )
and e 6∈ E(R). This implies e ∈ E(P) and x1, y1 ∈ V (P). Note that, by (4.13)(b), both v and u belong to X1 ∪ · · · ∪ Xn. By
(4.7)(b), the part of P from v to x1 must contain a vertex from Xj, and likewise the part of P from y1 to u. �

(e) |Ai| ≤ k+ 1− |W | for 1 ≤ i ≤ 3.
Proof of (e). Suppose |A1| ≥ k + 2 − |W |. It is obvious that |W | ≤ k + 1 (by (4.7)(a)). Hence, A1 6= ∅. We also have

that L2 ∪ L3 −W 6= ∅ since |L2 ∪ L3| ≥ k+ 2 (by (4.8)(d)) and |W | ≤ k+ 1 (by (4.7)(a)).
Since |L2 ∪ L3| ≥ k+ 2 (by (4.8)(d)), we have that |L2 ∪ L3 −W | ≥ k+ 2− |W |. Note that G−W is (k+ 2− |W |)-

connected, there are (k+ 2− |W |) disjoint paths from A1 to L2 ∪ L3 −W each of which is of order at least k+ 2− |W |.
By (4.13)(d), every path Pj contains at least two vertices of Xi for some i. Hence,

∑
1≤i≤nb

1
2 |Xi|c ≥ k+ 2− |W |. This is a

contradiction to (4.7)(a). The other cases follow by the similar arguments. �

4.14. We claim that |W | ≤ 3. If equality holds then M = W and |Ai| = k+ 1− |W |

This claim is to be proved in two steps in this subsection. First we show that

(a)
∑3
i=1 |Li ∩W | ≤ |W | + 3.
Note that

∑3
i=1 |Li ∩W | ≤ |W | + |M|. Hence,

∑3
i=1 |Li ∩W | ≤ |W | + 3 since |M| ≤ 3 by (4.8)(c). �

(b) By (4.13)(a), (4.13)(e) and (4.14)(a), we have the following inequality:

3k =
3∑
i=1

|Li| ≤
3∑
i=1

(|Ai| + |Li ∩W |) ≤ 3(k+ 1− |W |)+ |W | + 3 = 3k+ 6− 2|W |.

Hence, |W | ≤ 3. And if |W | = 3 thenM = W and |Ai| = k+ 1− |W |. �
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4.15. We claim that, for 1 ≤ j ≤ n, if |W ∪ Xj| < (k+ 2) then Xj = Yj

Suppose that Xj 6= Yj. First we claim that V (G) − Yj − W is not empty. Since |W ∪ Xj| ≤ k + 2 and |L1 ∪ L2 ∪ L3| =
3k− |M| ≥ 3k− 3 ≥ k+ 3 (by (4.8)(b) and (4.8)(c)), (L1 ∪ L2 ∪ L3)− (W ∪ Xj) 6= ∅. Hence V (G)− Yj −W which contains
(L1 ∪ L2 ∪ L3)− (W ∪ Xj) is not empty.
Note that G is (k+ 2)-connected and by (4.7)(b),W ∪ Xj is a vertex-cut separating Yj − Xj and V (G)− Yj −W neither of

which is empty. It follows that |W ∪ Xj| ≥ (k+ 2), as required. �

4.16. We claim that, for 1 ≤ j ≤ n, if |Xj| < 3 then Xj = Yj

By (4.15), it is obvious that Xj = Yj if |Xj| < 3 since k ≥ 4 (by (4.3)) and |W | ≤ 3 (by (4.14)).
4.17. Let Z = (X1 ∪ · · · ∪ Xn)− (L1 ∪ L2 ∪ L3)

4.18. Some vertex-cuts of G

Suppose that Xi ∩ Lj 6= ∅ for some i ∈ {1, 2, . . . , n}, j ∈ {1, 2, 3}. By (4.7)(c), (4.13)(a) and (4.13)(d), any path joining
Xi ∩ Lj and L1 ∪ L2 ∪ L3−W − Lj must use a vertex ofW or Z or Xi∆Lj. Therefore, (Xi∆Lj)∪W ∪ Z is a cutset of G separating
Xi ∩ Lj from L1 ∪ L2 ∪ L3 −W − Lj.

4.19. We claim that |Xi| ≥ 3 for 1 ≤ i ≤ n

This claim is to be proved in several steps in this subsection.

(a) First we show that, for 1 ≤ i ≤ 3, 1 ≤ j ≤ n, if |Xj| = 1, then Ai ∩ Xj = ∅.
Suppose A1 ∩ Xj 6= ∅. Let Xj = {v} and N = NG(v). Since G is (k + 2)-connected, |N| ≥ k + 2. Hence

|N − W | ≥ k + 2 − |W |. Note that |A1| ≤ k + 1 − |W | by (4.13)(e), this implies N − A1 − W 6= ∅. Take a vertex
x ∈ N − A1 −W . Since |Xj| = 1, we have Xj = Yj = {v} by (4.16). Note that xv ∈ E(G), x is in A1 by the definition of A1,
a contradiction. Hence A1 ∩ Xj = ∅. �

(b) Second we show that, for 1 ≤ i ≤ 3, 1 ≤ j ≤ n, if |Xj| = 1, then Ai ∩ NG(Xj) = ∅.
Suppose that |X1| = 1 and x ∈ A1∩NG(X1). Hence, by (4.13)(b), x ∈ Xi for some i 6= 1. Since |X1| = 1, by the definition

of A1 (defined in (4.12)), X1 ⊆ A1. This contradicts (4.19)(a) since |X1| = 1. �
(c) Since |Xi| is odd for each i (by (4.10)), letm be an integer such thatm ≤ nwith |Xi| = 1 for 1 ≤ i ≤ m ≤ n and |Xj| ≥ 3
form < j ≤ n.

By the definition of Ai and (4.8), we have

3∑
i=1

|Ai| ≥ |L1 ∪ L2 ∪ L3| − |W | = 3k− |M| − |W | (1)

Also, by (4.7)(a),∑
m<j≤n

|Xj| ≤ 3
∑
m<j≤n

b
1
2
|Xj|c ≤ 3

∑
1≤j≤n

b
1
2
|Xj|c ≤ 3(k+ 1− |W |) (2)

Assume X = X1 ∪ X2 ∪ · · · ∪ Xm and N = NG(X)− X . Then we can get the following.

(i) N ⊆ W ∪ Xm+1 ∪ · · · ∪ Xn by (4.7)(b) and (4.16).
(ii) N ∩ A1 = N ∩ A2 = N ∩ A3 = ∅ by (4.19)(b).
(iii) |N| ≥ k+ 2 since N separates X from A1 ∪ A2 ∪ A3 (by (4.19)(a) and (4.19)(b)) and G is (k+2)-connected.

Hence, we have

|N| + |A1| + |A2| + |A3| ≤ |W | +
n∑

i=m+1

|Xi|. (3)

By (iii), (1)–(3), we have

(k+ 2)+ (3k− |M| − |W |) ≤ |W | + 3(k+ 1− |W |)
= 3k+ 3− 2|W |.

Hence,

|W | ≤ 1+ |M| − k.
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By (4.8)(a),

|W | ≤ 1+ |W | − k.

That is,

k ≤ 1.

This contradicts k ≥ 4 (4.3) and completes the proof of (4.19). �

4.20. We prove some inequalities for |Z |

(i)

|Z | ≤ 3k+ 3− 3|W | − |L1 ∪ L2 ∪ L3 −W |,

and the equality holds if and only if |Xj| = 3 for every j ∈ {1, 2, . . . , n}.
(ii)

|Z | ≤ 3+ |M| − 2|W |,

and the equality holds if and only if |Xj| = 3 for every j ∈ {1, 2, . . . , n} andW ⊆ L1 ∪ L2 ∪ L3.
Let s = |Z |. Then, by (4.17),

|X1 ∪ · · · ∪ Xn| = s+ |L1 ∪ L2 ∪ L3 −W |.

But, by (4.19), |Xj| ≤ 3b 12 |Xj|c for 1 ≤ j ≤ n, and therefore

3
∑
1≤j≤n

b
1
2
|Xj|c ≥

∑
1≤j≤n

|Xj| = s+ |L1 ∪ L2 ∪ L3 −W |,

with equality if and only if |Xj| = 3 for any j ∈ {1, 2, . . . , n}. By (4.7)(a), we have

3(k+ 1− |W |) ≥ s+ |L1 ∪ L2 ∪ L3 −W |.

That is,

s ≤ 3k+ 3− 3|W | − |L1 ∪ L2 ∪ L3 −W |,

and the equality holds if and only if |Xj| = 3 for any j ∈ {1, 2, . . . , n}. That completes the proof of (4.20)(i).
Note that, by (4.8)(b), we have

|L1 ∪ L2 ∪ L3 −W | ≥ |L1 ∪ L2 ∪ L3| − |W | = 3k− |M| − |W |,

and the equality holds if and only ifW ⊆ L1 ∪ L2 ∪ L3. Hence, by (4.20)(i),

s ≤ 3k+ 3− 3|W | − |L1 ∪ L2 ∪ L3 −W | ≤ 3k+ 3− 3|W | − (3k− |M| − |W |)
= 3+ |M| − 2|W |,

and the equality holds if and only ifW ⊆ L1 ∪ L2 ∪ L3 and |Xj| = 3 for every j ∈ {1, 2, . . . , n}. This completes the proof of
(4.20)(ii). �

4.21. (i) |Ai ∩ Xj| < 1
2 |Xj| for 1 ≤ j ≤ n and 1 ≤ i ≤ 3

Suppose that |A1 ∩ X1| ≥ 1
2 |X1|. Since |X1| ≥ 3 by (4.19), there exists a vertex v ∈ A1 ∩ X1. Since |L2 ∪ L3 − W | ≥

|L2 ∪ L3| − |W | ≥ k+ 2− |W | by (4.8)(d), and G−W is (k+ 2− |W |)-connected, there are (k+ 2− |W |) paths of G−W
between A1 and L2∪ L3−W , disjoint except possibly for v. Choose themwith no internal vertex in A1. By (4.13)(d), each has
at least two vertices in Xj for some j, but at most b 12 |Xj|c of them have two vertices in Xj for each j 6= 1. Note that by (4.7)(a),
we have∑

2≤j≤n

⌊
1
2
|Xj|
⌋
≤ k+ 1− |W | −

⌊
1
2
|X1|

⌋
.

Thus, at least 1+b 12 |X1|c of them have two vertices in X1. But each has only one vertex in A1, and so has a vertex in X1 which
does not belong to A1, and all these vertices in X1 − A1 are different. Hence |X1 − A1| ≥ 1+ b 12 |X1|c, a contradiction. �

(ii) |Li ∩ Xj| < 1
2 |Xj| for 1 ≤ j ≤ n and 1 ≤ i ≤ 3 by (4.13)(a) and (4.21)(i).
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4.22. We eliminate the case of k = 4 and |W | = 3

In this case, by (4.11)(a), n ≥ k− 2 = 2.
Moreover, by (4.7)(a), we have

|W | +
∑
1≤i≤n

b
1
2
|Xi|c ≤ k+ 1 = 5.

That is,∑
1≤i≤n

b
1
2
|Xi|c ≤ 2.

We have n = 2 and |X1| = |X2| = 3 (by (4.19)). Hence, Z = ∅ by (4.11)(b).
Next we claim that |Li ∩ Xj| 6= 0 for i ∈ {1, 2, 3} and j ∈ {1, 2}. For otherwise, we may assume that L1 ∩ X1 = ∅. Then by

(4.21)(ii), |L2 ∩ X1| ≤ 1 and |L3 ∩ X1| ≤ 1. This implies that Z ⊇ X1 − (L1 ∪ L2 ∪ L3) = X1 − L2 ∪ L3 6= ∅. This contradicts
that Z = ∅.
Therefore, by (4.21)(ii), we have |Li ∩ Xj| = 1 for i ∈ {1, 2, 3} and j ∈ {1, 2}. And by (4.11) (b), we have W = M and

W ∪ X1 ∪ X2 = L1 ∪ L2 ∪ L3. Hence, |W ∩ Li| = 2 for i ∈ {1, 2, 3}.
Next, we will apply Lemma 3.5 to find a 6-cluster in G traversing L1 ∪ L2 ∪ L3.
Let X1 = {x1, x2, x3}, X2 = {y1, y2, y3},W = {z1, z2, z3}, let {xi, yi} ⊆ Li for i ∈ {1, 2, 3}, and z1 ∈ L2 ∩ L3, z2 ∈ L1 ∩ L3,

z3 ∈ L1 ∩ L2 (by (4.2)).
Hence, we get the description of graph G as in Lemma 3.5: xi, yi, zi (1 ≤ i ≤ 3) are distinct vertices of 6-connected

graph G, and L1 = {x1, y1, z2, z3}, L2 = {x2, y2, z3, z1}, L3 = {x3, y3, z1, z2} are 4-cliques, and there is a partition Y1, Y2 of
V (G)−{z1, z2, z3}with X1 ⊆ Y1, X2 ⊆ Y2, and xiyi (1 ≤ i ≤ 3) are the only edges of Gwith one end in Y1 and the other in Y2.
Therefore by Lemma 3.5, G has a 6-cluster traversing L1 ∪ L2 ∪ L3. This is a contradiction.

4.23. We claim that, for 1 ≤ j ≤ n, if |Xj| = 3 then Xj = Yj

By (4.14), |W | ≤ 3. By (4.15), it is obvious that Xj = Yj if k ≥ 5 or |W | < 3. Hence, the only remaining case is k = 4 and
|W | = 3, which was eliminated in (4.22).

4.24

(i) We claim that if v ∈ Ai ∩ Xj for some i ∈ {1, 2, 3} and some j ∈ {1, 2, . . . , n}, then dYj−Ai(v) ≥ 2, and the equality
holds if and only if dG(v) = k+ 2,W ∪ Ai ⊆ NG(v) ∪ {v} and |Ai| = k+ 1− |W |.
By the definition of Ai (4.12), we have

NG(v)− (Yj − Ai) ⊆ Ai ∪W − {v}.

Since G is (k+ 2)-connected and |Ai| ≤ k+ 1− |W | (by (4.13)(e)), we have:

|NG(v) ∩ (Yj − Ai)| ≥ (k+ 2)− |Ai ∪W − {v}| ≥ (k+ 2)− (k+ 1− |W | + |W | − 1) = 2

and the equality holds if and only if d(v) = k+ 2,W ∪ Ai ⊆ NG(v) ∪ {v} and |Ai| = k+ 1− |W |.
(ii) We claim that if v ∈ Ai ∩ Xj and |Xj| = 3 for some i ∈ {1, 2, 3} and some j ∈ {1, 2, . . . , n}, then dXj(v) = 2,

W ∪ Ai ⊆ NG(v) ∪ {v} and |Ai| = k+ 1− |W |.
Note that |Xj| = 3. By (4.23), we have Yj = Xj, and therefore,

dYj−Ai(v) = dXj−Ai(v) ≤ 2.

On the other hand, by (4.24)(i), we have dYj−Ai(v) ≥ 2. Hence, dYj−Ai(v) = 2. By (4.24)(i) again, we are done.

4.25. We claim that if |Xj| = 3 for some j then

(i) |Xj ∩ Ai| = 1 for each i ∈ {1, 2, 3}.
(ii) Xj induces a clique of G.
(iii) W ⊆ NG(v) for any v ∈ Xj.

Proof of (i): For otherwise, we may assume that |Xj ∩ A1| 6= 1. By (4.21)(i), |Xj ∩ A1| = 0, |A2 ∩ Xj| ≤ 1 and |A3 ∩ Xj| ≤ 1.
This implies that there exists x ∈ Xj, and x 6∈ A1 ∪ A2 ∪ A3. Since |Xj| = 3, we have Xj = Yj by (4.23), and by the definition of
Ai (4.12), we have NG(x) ⊆ W ∪ (Z − {x}) ∪ (Xj − {x}). Note that, by (4.20)(ii), (4.14), we have

|W | + |Z − {x}| + |Xj − {x}| ≤ |W | + (3+ |M| − 2|W | − 1)+ 2 = 4+ |M| − |W |.

Note that |M| ≤ |W | by (4.8)(a). Hence, we have |NG(x)| ≤ 4. This contradicts that G is (k+ 2)-connected where k ≥ 4 (by
(4.3)).
Proof of (ii) and (iii). (ii) and (iii) are immediate corollaries of (4.25)(i) and (4.24)(ii).
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4.26. We claim that there exists some j ∈ {1, 2, . . . , n} such that |Xj| ≥ 5

By (4.19), we may assume |Xj| = 3 for all j ∈ {1, 2, . . . , n}.
By (4.25)(i)–(ii), every vertex of (L1 − W ) ∩ Xj (for all j ∈ {1, 2, . . . , n}) is adjacent to a vertex of A2 ∩ Xj and a vertex

of A3 ∩ Xj. By (4.25)(i) and (4.25)(iii), every vertex of L1 ∩W is adjacent to some vertex of A2 and some vertex of A3, hence,
℘ = {u1, u2, . . . , uk, A2, A3} is a (k+2)-cluster that traverses L1∪L2∪L3 where {u1, u2, . . . , uk} ∈ L1. This is a contradiction.

4.27. We claim that |Xj| ≥ 5 for every j ∈ {1, 2, . . . , n}

For otherwise, by (4.19), we may assume |X1| = 3. By (4.25)(i), |Ai ∩ X1| = 1 for each i ∈ {1, 2, 3}. Hence, by (4.24)(ii),
|Ai| = k+ 1− |W | for each i ∈ {1, 2, 3}.
Furthermore, by (4.13)(b), (4.13)(c), we have

|Z | ≥ |A1| + |A2| + |A3| − |L1 ∪ L2 ∪ L3 −W | = (3k+ 3− 3|W |)− |L1 ∪ L2 ∪ L3 −W |.

However, by (4.20)(i), we have

|Z | = 3k+ 3− 3|W | − |L1 ∪ L2 ∪ L3 −W |.

The equality of (4.20)(i) implies that |Xi| = 3 for all i ∈ {1, 2, . . . , n}. This contradicts (4.26). �

4.28. We show some inequalities for n

By (4.27) and (4.7)(a),

5n ≤
∑
1≤j≤n

|Xj| ≤ 2 ∗ (k+ 1− |W |)+ n = 2k+ 2+ n− 2|W |. (4)

The inequality (4) can be simplified as

2n ≤ k+ 1− |W |. (5)

Note that the equality (4) (and (5), as well) holds if and only if |Xi| = 5 for every i.

4.29. We claim that n = k− 2

For otherwise, since n ≥ k− 2 by (4.11)(a), we may assume that n ≥ k− 1.
By (5), we have

2k− 2 ≤ 2n ≤ k+ 1− |W |. (6)

That is,

k ≤ 3− |W |.

Note that k ≥ 4 by (4.3). This is a contradiction.

4.30. The final step of the proof

By (4.29), n = k− 2. By (4.11)(b), we have

W = M and L1 ∪ L2 ∪ L3 = W ∪ X1 ∪ · · · ∪ Xn.

Hence,

Z = ∅. (7)

By (5) of (4.28), we have

2k− 4 = 2n ≤ k+ 1− |W |.

That is,

k ≤ 5− |W |. (8)

Note that k ≥ 4 by (4.3). Therefore, there are only two cases: k = 5 and k = 4 (by (7) and (8)).
Case 1: k = 5. In this case, |W | = 0. By (4.29), n = k− 2 = 3. The equality of (5) of (4.28) implies that

|X1| = |X2| = |X3| = 5.
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By (4.21)(ii), without loss of generality, we assume |L1 ∩ X1| = 2. By (4.18), (X1∆L1) is a vertex-cut of order at most 6
since Z = ∅ andW = ∅. This contradicts that G is (k+ 2)-connected where k = 5.
Case 2: k = 4. In this case, n = k− 2 = 2 (by (4.29)). There are two subcases: |W | = 1 and |W | = 0 (by (8)).
Subcase 1: |W | = 1. The equality (5) of (4.28) implies that

|X1| = |X2| = 5.

Without loss of generality, we assumeW ⊆ L1 and |L1 ∩ X1| = 2. By (4.18), (X1∆L1) is a vertex-cut of order at most 5
since Z = ∅ andW ⊆ L1. This contradicts that G is (k+ 2)-connected where k = 4.
Subcase 2: |W | = 0.
Since Z = ∅ by (7), we have

n∑
j=1

|Xj| = |L1 ∪ L2 ∪ L3| = 3k = 12. (9)

Therefore, the only possibility in this subcase is that |X1| = 5 and |X2| = 7 (by (4.10) and (4.27)).
Without loss of generality, we assume |L1 ∩ X1| = 2. By (4.18), (X1∆L1) is a vertex-cut of order at most 5 since Z = ∅

andW = ∅. This contradicts that G is (k+ 2)-connected where k = 4.
This completes the proof of main theorem.

5. Proof of Lemma 3.5

The following two lemmas will be useful in the proof of Lemma 3.5.

Lemma 5.1 (Whitney [4]). Any two planar embeddings of a 3-connected graph are equivalent.

Let G = (V , E) is a graph and A ⊆ V (G), we denote the set of vertices on V (G)− Awhich are adjacent to some vertex in
A by Υ (A). That is Υ (A) = N(A)− A.

Lemma 5.2 (Seymour [16], Thomassen [18]). Let s1, t1, s2, t2 be distinct vertices of a graph G = (V , E). Then just one of the
following is true:

(i) there are paths joining s1 to t1 and s2 to t2 respectively, vertex-disjoint.
(ii) for some k ≥ 0 there are pairwise disjoint sets A1, . . . , Ak ⊆ V (G)− {s1, s2, t1, t2} such that
(a) for i 6= j, Υ (Ai) ∩ Aj = ∅,
(b) for 1 ≤ i ≤ k, |Υ (Ai)| ≤ 3,
(c) if G̃ is the graph obtained from G by (for each i) deleting Ai and adding new edges joining every pair of distinct vertices
in Υ (Ai), and also for j = 1, 2 adding an edge ej joining sj to tj, then G̃ may be drawn in the plane with no pairs of edges
crossing except e1, e2 which cross once.

Proof of Lemma 3.5. Let G be a counterexample to the lemma with least number of vertices. Let W = {z1, z2, z3}, X1 =
{x1, x2, x3}, X2 = {y1, y2, y3}. Let =ij = {zi} ∪ Xj and Gij be the subgraph induced by {zi} ∪ Yj where 1 ≤ i ≤ 3 and 1 ≤ j ≤ 2.
Let f1, f2, f3 be the edges with ends z2z3, z3z1, and z1z2 respectively.

5.1. We claim that G− {f1, f2, f3} is not planar

Since G is 6-connected, |E(G)| ≥ 3|V (G)|. Therefore |E(G − {f1, f2, f3})| ≥ 3|V (G)| − 3. Note that a planar graph with
n ≥ 3 vertices has at most 3n− 6 edges. Hence G− {f1, f2, f3} is not planar.

5.2

The strategy of the proof is to prove that G′ = G − {f1, f2, f3} is planar (hence contradicts 5.1). The planarity of G′ is
yielded by showing that each Gi = G′[W ∪ Yi](1 ≤ i ≤ 2) has a planar embedding with vertices z1, x2, z3, x1, z2, x3 for
i = 1 (or z1, y2, z3, y1, z2, y3 for i = 2, respectively) around its exterior face (Lemma 5.2 is applied here). And the planar
embedding of Gi is constructed from the unique embedding of the 3-connected graph Hi = Yi ∪ Ei (1 ≤ i ≤ 2) where
E1 = {x1x2, x1x3, x2x3}, and E2 = {y1y2, y1y3, y2y3}, and planar embeddings of other subgraphs of Gi ∪ Ei.

5.3. We claim that |Y1|, |Y2| ≥ 4

For otherwise, we may assume |Y1| = 3. That is, Y1 = X1. Since G is 6-connected, dG(x1) ≥ 6. HenceW ∪ {y1, x2, x3} ⊆
NG(x1). With the similar argument, we have W ∪ {y3, x1, x2} ⊆ NG(x3) and W ∪ {y2, x1, x3} ⊆ NG(x2). Therefore,
℘ = {{x1}, {x2}, {x3}, {z1}, {z2}, {z3}} is a 6-cluster traversing {x1, y1, z1, x2, y2, z2, x3, y3, z3}, a contradiction.
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5.4. We claim that the subgraph induced by Yi is connected for i = 1, 2

For otherwise, we assume that the subgraph induced by Y1 is not connected. Let D be a component not containing x1,
then {x2, x3, z1, z2, z3} is a 5-cutset separating D and Y2, it contradicts that G is 6-connected.

5.5. We claim that there is no 4-cluster in Gij traversing =ij where 1 ≤ i ≤ 3, 1 ≤ j ≤ 2

For otherwise, we may assume that there is a 4-cluster ℘1 in G11 traversing =11. Let ℘ = ℘1 ∪ {{z2, z3}, {Y2}}, then ℘ is
a 6-cluster in G traversing {x1, y1, z1, x2, y2, z2, x3, y3, z3}, a contradiction.

5.6. We claim that both X1 and X2 are independent sets of G

For otherwise, without loss of generality, we assume that x1x2 ∈ E(G). There is a vertex x ∈ Y1 − X1 by (5.3) and there
are 4 internally disjoint paths Px1 , Px2 , Px3 , Pz3 of G− {z1, z2} since G− {z1, z2} is 4-connected where Pu is the path joining x
and u ∈ {x1, x2, x3, z3}.
Now since xiyi (1 ≤ i ≤ 3) are the only edges of G with one end in Y1 and the other in Y2, we have Pu ∩ Y2 = ∅ where

u ∈ {x1, x2, x3, z3}. Hence ℘ = {Px1 − x, Px2 − x, Pz3 − x, Px3} is a 4-cluster in G31 traversing =31. This contradicts (5.5).

5.7. We claim that there are no two vertex-disjoint paths in G11 joining z1 to x1 and x2 to x3 respectively

For otherwise, let P1 and P2 be the paths joining z1 to x1 and x2 to x3 respectively. Let A1 and A2 be disjoint fragments
of the subgraph induced by Y1 with P1 − {z1} ⊆ A1, P2 ⊆ A2, and A1 ∪ A2 maximal. Since the subgraph induced
by Y1 is connected by (5.4), A1 and A2 are adjacent. Therefore ℘ = {{z1}, {z2}, {z3}, A1, A2, Y2} is a 6-cluster traversing
{x1, y1, z1, x2, y2, z2, x3, y3, z3}, a contradiction.

5.8

(i)We claim thatG11 canbedrawn in aplane so that every vertex in=11 is incidentwith the infinite region and z1, x2, x1, x3
are around its exterior face in this order, and this embedding is denoted by π11.
By Lemma 5.2 and (5.7), there exists some k ≥ 0 and there are pairwise disjoint sets A1, . . . , Ak ⊆ V (G)− {z1, x2, x1, x3}

such that
(a) for i 6= j, Υ (Ai) ∩ Aj = ∅,
(b) for 1 ≤ i ≤ k, |Υ (Ai)| ≤ 3,
(c) if G̃11 is the graph obtained from G11 by deleting Ai and adding new edges joining every pair of distinct vertices in

Υ (Ai), and adding an edge e1 joining z1 to x1 and an edge e2 joining x2 to x3, then G̃11 may be drawn in the plane with no
pairs of edges crossing except e1, e2 which cross once.
We claim that k = 0. For otherwise, Υ (Ak) ∪ {z2, z3} is a cut set of order at most 5 separating Ak and Y2, it contradicts

that G is 6-connected.
Hence we have G11 = G̃11 − {e1, e2}, and result follows.
With the similar argument, we have
(ii) G21 can be drawn in a plane so that z2, x1, x2, x3 are around its exterior face in this order, and this embedding is

denoted by π21.
(iii) G31 can be drawn in a plane so that z3, x1, x3, x2 are around its exterior face in this order, and this embedding is

denoted by π31.

5.9. Let Gi be the graph obtained from the subgraph induced byW ∪Yi and deleting edges f1, f2, f3 for 1 ≤ i ≤ 2, and let G+1 be the
graph obtained from G1 by adding edges x1x2, x1x3, x2x3, let G+2 be the graph obtained from G2 by adding edges y1y2, y1y3, y2y3

In next few subsections, we are to show that G+1 has a planar embedding such that the triangle x1x2x3x1 is a facial circuit.

5.10

(i) Let Hh1 be the graph obtained from G+1 by deleting zi and zj where {h, i, j} = {1, 2, 3}. Obviously Hh1 is also the graph
obtained from Gh1 by adding edges x1x2, x1x3, x2x3. By (5.8), Gh1 has an embedding πh1 with {xi, xh, xj, zh} in its exterior
face. Hence πh1 can also be considered as an embedding of Hh1 with the triangle x1x2x3 as the exterior face. We denote this
embedded graph by πh1(Hh1).
(ii) Let H1 be the graphs obtained from the subgraph induced by Y1 by adding edges x1x2, x1x3, x2x3. Obviously, H1 can

also be obtained from Hh1 by deleting zh for h ∈ {1, 2, 3}. Hence πh1 can also be considered as an embedding of H1, and we
denote this embedded graph by πh1(H1).
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5.11. We claim that H1 is a 3-connected planar graph

Planarity is an immediate conclusion from (5.10)(ii). Next we will show that H1 is 3-connected.
For otherwise, we assume that H1 is not 3-connected. Let A be a cut set of order less than 3. Since {x1, x2, x3} induces a

clique in the graph H1, let D be a component of H1 − Awith xi 6∈ D for every i ∈ {1, 2, 3}. Then A ∪ {z1, z2, z3} is a cutset of
G of order at most 5 separating D and Y2, it is a contradiction.
5.12. By Lemma 5.1, H1 has only one embedding π0. That is, π0(H1) = πh1(H1) for each h ∈ {1, 2, 3}.

5.13. (i) We claim that G+1 has a planar embedding such that the triangle x1x2x3x1 is a facial circuit

Let Cij be the facial circuit of the embedded graph π0(H1) containing the edge xixj other than the triangle x1x2x3x1. Let Fij
be the face of π0(H1) bounded by Cij where 1 ≤ i < j ≤ 3.
By (5.12), π0(H1) = π11(H1), and by (5.10) (ii), π11(H1) is obtained from π11(H11) by deleting the vertex z1, hence

z1 must be inside the face F23 of π0(H1), and all neighborhoods of z1 must be in the facial circuit C23. Similarly, for each
{h, i, j} = {1, 2, 3}, all neighborhoods of zh must be in the facial circuit Cij.
Note that Fij’s are distinct for 1 ≤ i < j ≤ 3 since H1 is 3-connected by (5.11). Now we can get a planar embedding of G+1

by adding the vertex zh and edges zhu into the face Fij where u ∈ NG(zh) ∩ Y1.
With the similar argument, we have
(ii) G+2 has a planar embedding such that the triangle y1y2y3y1 is a facial circuit.

5.14. The final step of the proof

By (5.13) and (5.9), Gi is planar with triangle z1z2z3 as the exterior face.
Now we identify zi of G1 to zi of G2 where 1 ≤ i ≤ 3, and join xi of G1 to yi of G2, we get planar graph G − {f1, f2, f3}, it

contradicts (5.1).
This completes the proof of this lemma. �
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