Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:
http://www.elsevier.com/copyright

Cliques, minors and apex graphs

Jianbing Niu, Cun-Quan Zhang*
Department of Mathematics, West Virginia University, Morgantown, West Virginia, 26506-6310, United States

A R T I C L E I N F O

Article history:

Received 25 May 2007
Received in revised form 1 August 2008
Accepted 8 December 2008
Available online 7 January 2009

Keywords:

Clique
Clique-minor
Apex

Abstract

In this paper, we proved the following result: Let G be a $(k+2)$-connected, non- $(k-3)$ apex graph where $k \geq 2$. If G contains three k-cliques, say L_{1}, L_{2}, L_{3}, such that $\left|L_{i} \cap L_{j}\right| \leq$ $k-2(1 \leq i<j \leq 3)$, then G contains a K_{k+2} as a minor. Note that a graph G is t-apex if $G-X$ is planar for some subset $X \subseteq V(G)$ of order at most t.

This theorem generalizes some earlier results by Robertson, Seymour and Thomas [N. Robertson, P.D. Seymour, R. Thomas, Hadwiger conjecture for K_{6}-free graphs, Combinatorica 13 (1993) 279-361.], Kawarabayashi and Toft [K. Kawarabayashi, B. Toft, Any 7-chromatic graph has K_{7} or $K_{4,4}$ as a minor, Combinatorica 25 (2005) 327-353] and Kawarabayashi, Luo, Niu and Zhang [K. Kawarabayashi, R. Luo, J. Niu, C.-Q. Zhang, On structure of k-connected graphs without K_{k}-minor, Europ. J. Combinatorics 26 (2005) 293-308].

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Hadwiger's Conjecture from 1943 suggests a far reaching generalization of the Four Color Problem, and it is one of the most famous problems in the theory of graph minors. Hadwiger's Conjecture states the following.

Conjecture 1.1 (Hadwiger [6]). For all $k \geq 1$, every k-chromatic graph has the complete graph K_{k} on k vertices as a minor.
For $k=1,2,3$, this conjecture is easy to prove, and for $k=4$, Hadwiger himself [6] and Dirac [5] proved it. For $k=5$, however, it seems extremely difficult. In 1937, Wagner [20] proved that the case $k=5$ is equivalent to the Four Color Theorem [1,2,14]. In 1993, Robertson, Seymour and Thomas [15] proved that a minimal counterexample to the case $k=6$ is a graph G which has a vertex v such that $G-v$ is planar. Hence, assuming the Four Color Theorem, the case $k=6$ of Hadwiger's Conjecture holds. This result is the deepest in this research area. So far, the cases $k \geq 7$ are open.

The following question is motivated by Hadwiger's Conjecture.
Question 1.2. Is it true that a minimal counterexample to Hadwiger's Conjecture for $k \geq 6$ has a set X of $k-5$ vertices such that $G-X$ is planar?

This is true for $k=6$ as Robertson, Seymour and Thomas [15] showed. To consider a minimal counterexample to Hadwiger's Conjecture, one may try to prove the following conjecture.

Conjecture 1.3. A minimal counterexample to Hadwiger's Conjecture is k-connected.
This is true for $k \leq 7$ as Mader proved in [11]. Note that Toft [19] proved that a minimal counterexample to Hadwiger's Conjecture is k-edge-connected. This is a strong evidence for Conjecture 1.3.

[^0]Question 1.2 and Conjecture 1.3 lead us to the following question.
Question 1.4. Is it true that a K_{k}-minor-free k-connected graph for $k \geq 6$ has a set X of $k-5$ vertices such that $G-X$ is planar?
The case $k=6$ is a well-known conjecture due to Jorgensen [7], and still open. If true, this would imply Hadwiger's Conjecture for the $k=6$ case by Mader's result [12]. The case $k=7$ was conjectured in [10] as well.

Even though the case $k=6$ of Question 1.4 is still open, Robertson, Seymour and Thomas [15] gave a result for searching for a K_{6}-minor.

Theorem 1.5 (Robertson, Seymour and Thomas [15]). Let G be a simple 6-connected non-apex graph. If G contains three 4-cliques, say, L_{1}, L_{2}, L_{3}, such that $\left|L_{i} \cap L_{j}\right| \leq 2(1 \leq i<j \leq 3)$, then G contains a K_{6} as a minor.

In 2005, Kawarabayashi and Toft [10] proved the following theorem.
Theorem 1.6 (Kawarabayashi and Toft [10]). Any 7-chromatic graph has K_{7} or $K_{4,4}$ as a minor.
This settles the case $(6,1)$ of the following conjecture known as the $(k-1,1)$-Minor Conjecture, which is a relaxed version of Hadwiger's Conjecture.

Conjecture 1.7 (Chartrand, Geller, Hedetniemi [3]; Woodall [21]). For all $k \geq 1$, every k-chromatic graph has either a K_{k}-minor or a $K_{\left\lfloor\frac{k+1}{2}\right\rfloor,\left\lceil\frac{k+1}{2}\right\rceil}{ }^{-m i n o r}$.

In [10], the following result is the key lemma, which gives a result for searching for a K_{7}-minor.

Theorem 1.8 (Kawarabayashi and Toft [10]). Let G be a 7-connected graph. Suppose G contains three 5-cliques, say, L_{1}, L_{2}, L_{3}, such that $\left|L_{1} \cup L_{2} \cup L_{3}\right| \geq 12$, then G contains a K_{7}-minor.

In 2005, Kawarabayashi, Luo, Niu and Zhang [9] proved the following theorem.

Theorem 1.9 (Kawarabayashi, Luo, Niu and Zhang [9]). Let G be a $(k+2)$-connected graph where $k \geq 5$. If G contains three k-cliques, say L_{1}, L_{2}, L_{3}, such that $\left|L_{1} \cup L_{2} \cup L_{3}\right| \geq 3 k-3$, then G contains a K_{k+2} as a minor.

Our work is motivated by Theorem 1.5, and the main result of this paper is the following theorem which generalizes Theorems 1.5, 1.8 and 1.9.

Theorem 1.10. Let G be $a(k+2)$-connected, non- $(k-3)$-apex graph where $k \geq 2$. If G contains three k-cliques, say L_{1}, L_{2}, L_{3}, such that $\left|L_{i} \cap L_{j}\right| \leq k-2(1 \leq i<j \leq 3)$, then G contains a K_{k+2} as a minor.

Theorem 1.10, which generalizes Theorems $1.5,1.8$ and 1.9 , implies that a $(k+2)$-connected K_{k+2}-minor-free graph cannot contain three "nearly" disjoint k-cliques.

A remark about the extreme case in Theorem 1.10: $(k-3)$-apex graph: a $(k+2)$-connected graph may contain many copies of k-clique, but not necessarily a K_{k+2}-minor. For example, the graph $G=K_{k-3}+G_{1}$, where G_{1} is a 5-connected planar graph, is obviously K_{k+2}-minor-free and contains many copies of k-clique, many pairs of which overlap with each other with only $(k-3)$ vertices (in K_{k-3}).

We hope our result could be used to prove some results on 7- and 8-chromatic graphs. In fact, in [8], Kawarabayashi proved that any 7 -chromatic graph has K_{7} or $K_{3,5}$ as a minor by applying Theorem 1.9. We expect that Theorem 1.10 would be useful in the proofs of some h-chromatic cases of Conjecture 1.1 or Conjecture 1.7 for some larger integers h. Note that Theorem 1.9 would imply the 7 -chromatic case of Hadwiger's Conjecture (Conjecture 1.1) if one could find three copies of 5-clique not to overlap too much with each other, since Mader proved that the connectivity of such a counterexample is at least 7 [11].

The following was conjectured by Seymour and Thomas.
Conjecture 1.11. For every $p \geq 1$, there exists a constant $N=N(p)$ such that every $(p-2)$-connected graph on $n \geq N$ vertices and at least $(p-2) n-\frac{(p-1)(p-2)}{2}+1$ edges has a K_{p}-minor.

Note that the connectivity condition and the condition of the order of graphs are necessary because random graphs having no K_{k}-minor may have average degree $k \sqrt{\log k}$, but all these graphs are small. So if a graph is large enough and highly connected, we do not know any construction of infinite family of counterexamples. This conjecture is true for $p \leq 9$. For $p \leq 7$, these conjecture was proved by Mader [11]. For $p=8$, Jorgensen [7] proved it. Very recently, Song and Thomas [17] proved the case $p=9$. Note that all of these results do not require the connectivity condition in this conjecture.

2. Terminology and notations

All graphs considered in this paper are finite, undirected, and without loops or multiple edges. The complete graph (or, clique, as a subgraph) on n vertices is denoted by K_{n} and the complete bipartite graph such that one partite set has n vertices and the other partite set has m vertices is denoted by $K_{n, m}$.

A graph H is a minor of a graph G if H can be obtained from G by deleting edges and vertices and contracting edges.
For a vertex x of a subgraph H_{1} of G, the neighborhood of x in H_{1} is denoted by $N_{H_{1}}(x)$. And, for a vertex $v \in V(G)$ and a vertex subset (or a subgraph) Y of $G, d_{Y}(x)=|\{v \in Y: x v \in E(G)\}|$. A graph G is k-chromatic if G is vertex- k-colorable but not vertex- $(k-1)$-colorable. Let V_{1} and V_{2} be subsets of $V(G)$. The symmetric difference of V_{1} and V_{2}, denoted by $V_{1} \Delta V_{2}$, is the set $\left(V_{1} \cup V_{2}\right)-\left(V_{1} \cap V_{2}\right)$.

Let us say a graph G is k-apex if $G-X$ is planar for some subset $X \subseteq V(G)$ with $|X| \leq k$. By the definition, if $k \leq 0$, then a k-apex is planar. (For technical reason, a k-apex with negative k is mentioned sometime in this paper. Note that, there is no subset X with negative order. Hence, a k-apex with $k<0$ is actually a planar graph: since G is already planar after the deletion of a subset X that does not exit.) Furthermore, (a) for $k \geq 1$, a graph G is non- k-apex if $G-X$ is not planar for every subset $X \subseteq V(G)$ with $|X| \leq k$; (b) for $k=0$, a graph G is non-k-apex if G itself is not planar; (c) for $k<0$, a non- $\overline{k-a p e x}$ graph is either planar or non-planar. (Similar as above, for a graph G to be a non- k-apex with $k<0$, it is necessary that there is a subset X of order at least 0 such that $G-X$ is planar.)

A subset $X \subseteq V(G)$ is a fragment of G if $X \neq \emptyset$ and X induces a connected subgraph of G. Subsets $X, Y \subseteq V(G)$ are adjacent in G if $X \cap Y=\emptyset$ and some $x \in X$ is adjacent in G to some $y \in Y$.

A cluster in G is a set of mutually adjacent fragments G, and it is a p-cluster if it has cardinality p. Thus G has a K_{p}-minor if and only if it has a p-cluster. Given a subset $Y \subseteq V(G)$, a p-cluster \wp is said to traverse Y if $\wp=\left\{X_{1}, X_{2}, \ldots, X_{p}\right\}$ in such a way that $X_{i} \cap Y \neq \emptyset(1 \leq i \leq p)$.

Let v_{1}, v_{2}, v_{3} be mutually adjacent vertices of a graph G. We say G is triangular with respect to v_{1}, v_{2}, v_{3} if G is simple and either
(i) for some $i(1 \leq i \leq 3), G-v_{i}$ has maximum degree at most 2 , and either $G-v_{i}$ is a cycle or it has no cycle, or
(ii) all vertices of G have degree at most 3 , there is at most one vertex v of degree 3 with $v \neq v_{1}, v_{2}, v_{3}$, and $G-v_{1}-v_{2}-v_{3}$ has no cycle, or
(iii) all vertices of G have degree at most 3 , there is a triangle C in $G-v_{1}-v_{2}-v_{3}$, every vertex of degree 3 is in $\left\{v_{1}, v_{2}, v_{3}\right\} \cup V(C)$, and every cycle except for the two triangles $\left\{v_{1}, v_{2}, v_{3}\right\}$ and C contains both a vertex in $\left\{v_{1}, v_{2}, v_{3}\right\}$ and $V(C)$.

3. Lemmas

3.1. Good paths

One of the key lemmas in our proof is Mader's "H-Wege" Theorem, which was proved in [13].
Lemma 3.1 (Mader [13]). Let G be a graph, let $S \subseteq V(G)$ be an independent set, and $k \geq 0$ be an integer. Then exactly one of the following two statements holds.
(1) There are k paths of G, each with two distinct ends both in S, such that each $v \in V(G)-S$ is in at most one of the paths.
(2) There exists a vertex set $W \subseteq V(G)-S$ and a partition Y_{1}, \ldots, Y_{n} of $V(G)-(S \cup W)$, and a subset $X_{i} \subseteq Y_{i}, 1 \leq i \leq n$, such that
(a) $|W|+\sum_{1 \leq i \leq n}\left\lfloor\frac{1}{2}\left|X_{i}\right|\right\rfloor<k$,
(b) no vertex in $\bar{Y}_{i}-X_{i}$ has a neighbor in $V(G)-\left(W \cup Y_{i}\right)$ and,
(c) every path of $G-W$ with distinct ends both in S has an edge with both ends in Y_{i} for some i.

Let $Z_{1}, Z_{2}, \ldots, Z_{h}$ be subsets of $V(G)$. A path P of G with ends u, v is said to be good if there exist distinct i, j with $1 \leq i, j \leq h$ such that $u \in Z_{i}$ and $v \in Z_{j}$.

As Robertson, Seymour and Thomas pointed out in [15], we can deduce the following lemma from Lemma 3.1.
Lemma 3.2 (Robertson, Seymour and Thomas [15]). Let G be a graph, let $Z_{1}, Z_{2}, \ldots, Z_{h}$ be subsets of $V(G)$, and let $k \geq 1$ be an integer. Then exactly one of the following two statements holds.
(1) There are k mutually disjoint good paths of G.
(2) There exists a vertex set $W \subseteq V(G)$ and a partition Y_{1}, \ldots, Y_{n} of $V(G)-W$, and a subset $X_{i} \subseteq Y_{i}$, for $1 \leq i \leq n$ such that (a) $|W|+\sum_{1 \leq i \leq n}\left\lfloor\frac{1}{2}\left|X_{i}\right|\right\rfloor<k$,
(b) for any i with $1 \leq i \leq n$, no vertex in $Y_{i}-X_{i}$ has a neighbor in $V(G)-\left(W \cup Y_{i}\right)$ and $Y_{i} \cap\left(\cup_{j=1}^{h} Z_{j}\right) \subseteq X_{i}$, and
(c) every good path P in $G-W$ has an edge with both ends in Y_{i} for some i.

3.2. Cluster

Lemma 3.3 (Robertson, Seymour and Thomas [15], page 291). Let v_{1}, v_{2}, v_{3} be mutually adjacent vertices of a 4-connected simple non-planar graph G. Let $\mathfrak{I} \subseteq V(G)$ with $v_{1}, v_{2}, v_{3} \in \mathfrak{J}$ such that \mathfrak{F} is not triangular. Then there is a 5-cluster $\wp=\left\{\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\}, X_{1}, X_{2}\right\}$ in G such that \wp traverses \Im.

The following lemma is an immediate corollary of a result by Robertson, Seymour and Thomas in [15] (page 288).
Lemma 3.4. Let G be a 4-connected graph and $\mathfrak{\Im} \subseteq V(G)$ with $|\Im|=4$. Then either
(i) there is a 4-cluster in G traversing \mathfrak{J}, or
(ii) G can be drawn in a plane so that every vertex in \Im is incident with the infinite region.

3.3. The 6-cluster lemma

The following lemma deals with an extreme case of our main theorem. Since the proof of the lemma is relatively long and complicated, we present it here as an independent lemma and its proof in Section 5 . Readers may postpone the reading of the proof of Lemma 3.5 until after the proof of the main theorem.

Lemma 3.5. Let $x_{i}, y_{i}, z_{i}(1 \leq i \leq 3)$ be distinct vertices of a 6 -connected simple graph G, such that $\left\{x_{1}, y_{1}, z_{2}, z_{3}\right\},\left\{x_{2}, y_{2}, z_{3}, z_{1}\right\}$, $\left\{x_{3}, y_{3}, z_{1}, z_{2}\right\}$ are 4-cliques. Suppose, that there is a partition Y_{1}, Y_{2} of $V(G)-\left\{z_{1}, z_{2}, z_{3}\right\}$ with $x_{1}, x_{2}, x_{3} \in Y_{1}$, and $y_{1}, y_{2}, y_{3} \in Y_{2}$, such that $x_{i} y_{i}(1 \leq i \leq 3)$ are the only edges of G with one end in Y_{1} and the other in Y_{2}. Then G has a 6-cluster traversing $\left\{x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}, x_{3}, y_{3}, z_{3}\right\}$.

Note that, Robertson, Seymour and Thomas gave a result in page 293 of [15] similar to Lemma 3.5. However, in order to obtain a sharper and more general result in our main theorems (Theorems 1.10 and 4.1), we need a stronger result in Lemma 3.5 (for 6-cluster instead of 6-minor), which is approached differently from that in [15].

4. Proof of the main theorem

The main theorem (Theorem 1.10) is to be proved in this section. Here we prove a theorem that is slightly stronger than the main theorem (Theorem 1.10).

Theorem 4.1. Let G be $a(k+2)$-connected, non- $(k-3)$-apex graph where $k \geq 2$. If G contains three k-cliques, say L_{1}, L_{2}, L_{3}, such that $\left|L_{i} \cap L_{j}\right| \leq k-2(1 \leq i<j \leq 3)$, then one of the following holds,
(1) G contains a $(k+2)$-cluster traversing $L_{1} \cup L_{2} \cup L_{3}$, or
(2) (an exceptional case) $|T|=k-2$ where $T=L_{1} \cap L_{2} \cap L_{3}$, and $G-T$ is a planar graph with all edges in $L_{i}-T(i=1,2,3)$ around the exterior face. In this case, G contains $a(k+2)$-cluster $\left\{\left\{v_{1}\right\}, \ldots,\left\{v_{k}\right\}, B, I\right\}$ where $L_{1}=\left\{v_{1}, \ldots, v_{k}\right\}, B$ is the set of all vertices of $G-T$ around the exterior face except for those in L_{1}, and I is the set of all interior vertices of $G-T$.

Note: readers might be confused by a non- $(k-3)$-apex graph if $k=2$. Recall that a graph H is a non- t-apex if $G-R$ is planar for some vertex subset R, then R must be of order at least $t+1$. Hence, a non- $(k-3)$-apex graph for $k=2$ can be any graph, planar or non-planar.
Proof. Let G be a counterexample to the theorem with k as small as possible.

4.1. We claim that $k \geq 3$

For otherwise, we may assume $k=2, G$ is 4 -connected graph, and G contains three disjoint 2-cliques, say L_{1}, L_{2}, L_{3}.
Since L_{1} and L_{2} are disjoint 2-cliques, $\left|L_{1} \cup L_{2}\right|=4$. Note that G is 4 -connected, by Lemma 3.4. There are two cases:
(1) There is a 4 -cluster in G traversing $L_{1} \cup L_{2}$. In this case, by the definition of cluster, this 4 -cluster in G also traverses $L_{1} \cup L_{2} \cup L_{3}$, a contradiction, hence we are done.
(2) G can be drawn in a plane so that every vertex in $L_{1} \cup L_{2}$ is incident with the infinite region. In this case, since G is 4-connected, the edges of L_{1} and L_{2} must be around the exterior face. If one vertex v_{1} of L_{3} is not incident with the infinite region, then there are four internal vertex-disjoint paths from v_{1} to $L_{1} \cup L_{2}$, hence we get a 4-cluster traversing $L_{1} \cup L_{2} \cup L_{3}$, a contradiction. Therefore two vertices of L_{3} must be incident with the infinite region. Note that G is 4 -connected, G has a 4-cluster $\left\{\left\{v_{1}\right\},\left\{v_{2}\right\}, B, I\right\}$ where $L_{1}=\left\{v_{1}, v_{2}\right\}, B$ is the set of all vertices of G around the exterior face except for those in L_{1}, and I is the set of all interior vertices of G (it is easy to see that I and B both are connected), a contradiction.

4.2. We claim that $\left|L_{1} \cap L_{2} \cap L_{3}\right|=0$

For otherwise, we assume $\left|L_{1} \cap L_{2} \cap L_{3}\right| \neq 0$. Let $x \in L_{1} \cap L_{2} \cap L_{3}$ and $G^{\prime}=G-\{x\}$, then G^{\prime} is a $(k+1)$-connected non- $(k-4)$-apex graph. By minimality of k, there are two cases:
Case (1): There is a $(k+1)$-cluster \wp_{1} of $G-\{x\}$ traversing $L_{1} \cup L_{2} \cup L_{3}-\{x\}$. Let $\wp=\wp_{1} \cup\{\{x\}\}$, then \wp is a $(k+2)$-cluster traversing $L_{1} \cup L_{2} \cup L_{3}$, a contradiction.

Case (2): $\left|T^{\prime}\right|=k-3$ where $T^{\prime}=\left(L_{1} \cap L_{2} \cap L_{3}\right)-\{x\}$, and $G^{\prime}-T^{\prime}$ is a planar graph with all edges of $\left(L_{i}-\{x\}\right)-T^{\prime}$ around the exterior face. G^{\prime} contains a $(k+1)$-cluster $\wp^{\prime}=\left\{\left\{v_{1}\right\}, \ldots,\left\{v_{k-1}\right\}, B, I\right\}$ where $\left\{x, v_{1}, \ldots, v_{k-1}\right\}=L_{1}$ and B is the set of all vertices of $G^{\prime}-T^{\prime}$ around the exterior face except for those in L_{1}, and I is the set of all interior vertices of $G^{\prime}-T^{\prime}$.

In order to show that $\wp=\left\{\{x\},\left\{v_{1}\right\}, \ldots,\left\{v_{k-1}\right\}, B, I\right\}$ is a $(k+2)$-cluster of G, it is sufficient to prove that x is adjacent to every other fragment. (i) it is obvious that $v_{i} \in N(x)$ since $x \in L_{1}$; (ii) it is similar that $N(x) \cap B \neq \emptyset$ since $x \in L_{2}$ and $L_{2} \cap B \neq \emptyset$; (iii) $N(x) \cap I \neq \emptyset$ for otherwise, the vertex x can be embedded into the exterior face of $G^{\prime}-T^{\prime}$ and therefore, $G-T^{\prime}$ is planar. This contradicts that G is non- $(k-3)$-apex.

4.3. We claim that $k \geq 4$

For otherwise, by (4.1), we may assume $k=3$. That is, G is a 5 -connected non-planar graph, and G contains three 3cliques, say L_{1}, L_{2}, L_{3}, such that $\left|L_{i} \cap L_{j}\right| \leq 1(1 \leq i<j \leq 3)$. By (4.2), we have $\left|L_{1} \cap L_{2} \cap L_{3}\right|=0$.

Let $Z=L_{1} \cup L_{2} \cup L_{3}$ and $v_{1}, v_{2}, v_{3} \in L_{1}$. Then Z is not triangular with respect to v_{1}, v_{2}, v_{3}. By Lemma 3.3, there is a 5 -cluster \wp in G such that \wp traverses Z.
4.4. We claim that $\left|L_{i} \cap L_{j}\right| \leq 1$ for $1 \leq i<j \leq 3$

For otherwise, we may assume $\left|L_{1} \cap L_{2}\right| \geq 2$. Let $B \subseteq L_{1} \cap L_{2}$ with $|B|=2$. By (4.2), $B \cap L_{3}=\emptyset$ since $L_{1} \cap L_{2} \cap L_{3}=\emptyset$. Since $G-B$ is k-connected, there exist k disjoint paths from L_{3} to $L_{1} \cup L_{2}-B$. Let $x, y \in B$ and $P_{1}, P_{2}, \ldots, P_{k}$ be a set of disjoint paths from L_{3} to $L_{1} \cup L_{2}-B$. Then $\wp=\left\{P_{1}, P_{2}, \ldots, P_{k}, x, y\right\}$ is a $(k+2)$-cluster that traverses $L_{1} \cup L_{2} \cup L_{3}$, a contradiction.
4.5. A path P of G with ends u, v is said to be good if there exist distinct i, j with $1 \leq i, j \leq 3$ such that $u \in L_{i}$ and $v \in L_{j}$
4.6. We claim that there do not exist $(k+2)$ mutually disjoint good paths in G

Let $P_{1}, P_{2}, \ldots, P_{k+2}$ be a set of disjoint good paths of G. Then $\wp=\left\{P_{1}, P_{2}, \ldots, P_{k+2}\right\}$ is a $(k+2)$-cluster that traverse $L_{1} \cup L_{2} \cup L_{3}$.

By Lemma 3.2 and (4.6), we have the following structure of G :
4.7. There exists a vertex set $W \subseteq V(G)$ and a partition Y_{1}, \ldots, Y_{n} of $V(G)-W$, and a subset $X_{i} \subseteq Y_{i}$, for $1 \leq i \leq n$ such that
(a) $|W|+\sum_{1 \leq i \leq n}\left\lfloor\frac{1}{2}\left|X_{i}\right|\right\rfloor \leq k+1$,
(b) for any i with $1 \leq i \leq n$, no vertex in $Y_{i}-X_{i}$ has a neighbor in $V(G)-\left(W \cup Y_{i}\right)$ and $Y_{i} \cap\left(\cup_{j=1}^{3} L_{j}\right) \subseteq X_{i}$, and
(c) every good path P in $G-W$ has an edge with both ends in Y_{i} for some i.

Let $M=\left(L_{1} \cap L_{2}\right) \cup\left(L_{2} \cap L_{3}\right) \cup\left(L_{3} \cap L_{1}\right)$, and choose W and $Y_{1}, X_{1}, \ldots, Y_{n}, X_{n}$ such that $|W|$ is as large as possible. Without loss of generality, we can assume that $Y_{i} \neq \emptyset$ for any $i \in\{1,2, \ldots, n\}$. By the definition of W, M and (4.7)(c), we have the following immediate observations:
4.8
(a) $M \subseteq W$ by (4.7)(c).
(b) $\left|L_{1} \cup L_{2} \cup L_{3}\right|=\left|L_{1}\right|+\left|L_{2}\right|+\left|L_{3}\right|-|M|$ by definition of M and (4.2).
(c) $|M| \leq 3$ by (4.2 and 4.4).
(d) $\left|L_{i} \cup L_{j}\right|>k+2$ for $1 \leq i<j \leq 3$.
(4.8)(d) is proved as follows: by (4.4) and $k \geq 4$ (by (4.3))

$$
\left|L_{i} \cup L_{j}\right|=\left|L_{i}\right|+\left|L_{j}\right|-\left|L_{i} \cap L_{j}\right|=2 k-1>k+2
$$

The following claim (e) follows from assumption (4.7)(b).
(e) $W \cup X_{1} \cup \cdots \cup X_{n} \supseteq L_{1} \cup L_{2} \cup L_{3}$, and $|W|+\sum_{i=1}^{n}\left|X_{i}\right| \geq\left|L_{1} \cup L_{2} \cup L_{3}\right|$.
4.9. We claim that $X_{i} \neq \emptyset$ for all i

Suppose that $X_{i}=\emptyset$ for some i. Since $|W| \leq k+1$ (by (4.7)(a)) and $\left|L_{1} \cup L_{2} \cup L_{3}\right| \geq\left|L_{1} \cup L_{2}\right| \geq k+2$ (by (4.8)(d), there is an integer $j(j \neq i)$ such that $X_{j} \neq \emptyset$ (by (4.8)(e)). Hence $n \geq 2$. Since Y_{i} is not empty, W is a cutset that separates Y_{i} and non-empty X_{j} and is of cardinality at most $k+1$. This contradicts that G is $(k+2)$-connected.

4.10. We claim that $\left|X_{i}\right|$ is odd for all i

Suppose that $\left|X_{1}\right|$ is even, then by (4.9), $\left|X_{1}\right| \geq 2$. Let $v \in X_{1}, W^{*}=W \cup\{v\}, Y_{1}^{*}=Y_{1}-v, X_{1}^{*}=X_{1}-v$ and $X_{i}^{*}=X_{i}$, $Y_{i}^{*}=Y_{i}$ for $2 \leq i \leq n$. The partition $\left\{W^{*}, X_{1}^{*}, \ldots, X_{n}^{*}, Y_{1}^{*}, \ldots, Y_{n}^{*}\right\}$ of $V(G)$ satisfies (4.7)(a)-(c), contradicting the choice that $|W|$ is as large as possible.

4.11. We claim that

(a) $n \geq k-2$
(b) if $n=k-2$ then

$$
|W|=|M| \quad \text { and } \quad W \cup X_{1} \cup X_{2} \cup \cdots \cup X_{n}=L_{1} \cup L_{2} \cup L_{3} .
$$

Since $\left|L_{1} \cup L_{2} \cup L_{3}\right| \geq\left|L_{1} \cup L_{2}\right| \geq k+2$ (by (4.8)(d)) and $|W| \leq k+1$ (by (4.7)(a)), we have $n \geq 1$. By (4.7)(a), (4.8)(a) and (4.8)(b), we have

$$
\begin{aligned}
2(k+1) & \geq 2\left(|W|+\sum_{1 \leq i \leq n}\left\lfloor\frac{1}{2}\left|X_{i}\right|\right\rfloor\right)=2|W|+\sum_{1 \leq i \leq n}\left|X_{i}\right|-n \\
& \geq|W|+\left|L_{1} \cup L_{2} \cup L_{3}\right|-n \geq|M|+\left|L_{1} \cup L_{2} \cup L_{3}\right|-n \\
& =\left|L_{1}\right|+\left|L_{2}\right|+\left|L_{3}\right|-n=3 k-n
\end{aligned}
$$

Thus,

$$
n \geq k-2
$$

and if $n=k-2$, then all equalities hold and therefore,

$$
|W|=|M| \quad \text { and } \quad|W|+\sum_{1 \leq i \leq n}\left|X_{i}\right|=\left|L_{1} \cup L_{2} \cup L_{3}\right| .
$$

4.12. Definition of $A_{i}($ for $i=1,2,3)$

Let $G^{\prime \prime}$ be the subgraph obtained from $G-W$ by deleting all edges contained in any Y_{j}. Let A_{i} be the union of the vertex subsets of all components of $G^{\prime \prime}$ containing some vertex of L_{i} for each $i \in\{1,2,3\}$.

4.13. Properties of $\left\{A_{1}, A_{2}, A_{3}\right\}$

Properties of $\left\{A_{1}, A_{2}, A_{3}\right\}$ are to be studied in this subsection. The first property is immediate by (4.7) and the definition of A_{i}.
(a) $L_{i}-W \subseteq A_{i} \subseteq V(G)-W$ for $i=1,2,3$.

Note that each $Y_{j}-X_{j}$ is an independent set of $G^{\prime \prime}$, and by (4.7)(b), we have the following properties.
(b) $A_{i} \subseteq X_{1} \cup \cdots \cup X_{n}$ for $i=1,2,3$.
(c) A_{1}, A_{2}, A_{3} are disjoint by the definition of A_{i} and (4.7)(c).
(d) Every path of $G-W$ from A_{i} to $A_{i^{*}}$ (for $\left.1 \leq i<i^{*} \leq 3\right)$ has at least two vertices in X_{j} for some j.

Proof of (d). Suppose there exists a path P from $v \in A_{1}$ to $u \in A_{2}$ in $G-W$. By the definition of A_{1}, A_{2}, we can take two disjoint paths Q and R such that Q is a path from some vertex $x \in L_{1}$ to v in $G\left[A_{1}\right]$ and R is a path from some vertex $y \in L_{2}$ to u in $G\left[A_{2}\right]$. Both Q and R have no edges with both ends in Y_{j} for any j by definition of A_{i}. Then we have a path S from x to y by using Q, P, R. Since S is a good path by (4.7)(c), S has an edge $e=x_{1} y_{1} \in Y_{j}$ for some j. Note that $e \notin E(Q)$ and $e \notin E(R)$. This implies $e \in E(P)$ and $x_{1}, y_{1} \in V(P)$. Note that, by (4.13)(b), both v and u belong to $X_{1} \cup \cdots \cup X_{n}$. By (4.7)(b), the part of P from v to x_{1} must contain a vertex from X_{j}, and likewise the part of P from y_{1} to u.
(e) $\left|A_{i}\right| \leq k+1-|W|$ for $1 \leq i \leq 3$.

Proof of (e). Suppose $\left|\bar{A}_{1}\right| \geq k+2-|W|$. It is obvious that $|W| \leq k+1$ (by (4.7)(a)). Hence, $A_{1} \neq \emptyset$. We also have that $L_{2} \cup L_{3}-W \neq \emptyset$ since $\left|L_{2} \cup L_{3}\right| \geq k+2$ (by (4.8)(d)) and $|W| \leq k+1$ (by (4.7)(a)).

Since $\left|L_{2} \cup L_{3}\right| \geq k+2\left(\right.$ by $(4.8)(\mathrm{d})$), we have that $\left|L_{2} \cup L_{3}-W\right| \geq k+2-|W|$. Note that $G-W$ is $(k+2-|W|)$ connected, there are $(k+2-|W|)$ disjoint paths from A_{1} to $L_{2} \cup L_{3}-W$ each of which is of order at least $k+2-|W|$. By (4.13)(d), every path P_{j} contains at least two vertices of X_{i} for some i. Hence, $\sum_{1 \leq i \leq n}\left\lfloor\frac{1}{2}\left|X_{i}\right|\right\rfloor \geq k+2-|W|$. This is a contradiction to (4.7)(a). The other cases follow by the similar arguments.
4.14. We claim that $|W| \leq 3$. If equality holds then $M=W$ and $\left|A_{i}\right|=k+1-|W|$

This claim is to be proved in two steps in this subsection. First we show that
(a) $\sum_{i=1}^{3}\left|L_{i} \cap W\right| \leq|W|+3$.

Note that $\sum_{i=1}^{3}\left|L_{i} \cap W\right| \leq|W|+|M|$. Hence, $\sum_{i=1}^{3}\left|L_{i} \cap W\right| \leq|W|+3$ since $|M| \leq 3$ by (4.8)(c).
(b) By (4.13)(a), (4.13)(e) and (4.14)(a), we have the following inequality:

$$
3 k=\sum_{i=1}^{3}\left|L_{i}\right| \leq \sum_{i=1}^{3}\left(\left|A_{i}\right|+\left|L_{i} \cap W\right|\right) \leq 3(k+1-|W|)+|W|+3=3 k+6-2|W| .
$$

Hence, $|W| \leq 3$. And if $|W|=3$ then $M=W$ and $\left|A_{i}\right|=k+1-|W|$.
4.15. We claim that, for $1 \leq j \leq n$, if $\left|W \cup X_{j}\right|<(k+2)$ then $X_{j}=Y_{j}$

Suppose that $X_{j} \neq Y_{j}$. First we claim that $V(G)-Y_{j}-W$ is not empty. Since $\left|W \cup X_{j}\right| \leq k+2$ and $\left|L_{1} \cup L_{2} \cup L_{3}\right|=$ $3 k-|M| \geq 3 k-3 \geq k+3$ (by (4.8)(b) and (4.8)(c)), $\left(L_{1} \cup L_{2} \cup L_{3}\right)-\left(W \cup X_{j}\right) \neq \emptyset$. Hence $V(G)-Y_{j}-W$ which contains $\left(L_{1} \cup L_{2} \cup L_{3}\right)-\left(W \cup X_{j}\right)$ is not empty.

Note that G is $(k+2)$-connected and by (4.7)(b), $W \cup X_{j}$ is a vertex-cut separating $Y_{j}-X_{j}$ and $V(G)-Y_{j}-W$ neither of which is empty. It follows that $\left|W \cup X_{j}\right| \geq(k+2)$, as required.

4.16. We claim that, for $1 \leq j \leq n$, if $\left|X_{j}\right|<3$ then $X_{j}=Y_{j}$

By (4.15), it is obvious that $X_{j}=Y_{j}$ if $\left|X_{j}\right|<3$ since $k \geq 4$ (by (4.3)) and $|W| \leq 3$ (by (4.14)).
4.17. Let $Z=\left(X_{1} \cup \cdots \cup X_{n}\right)-\left(L_{1} \cup L_{2} \cup L_{3}\right)$

4.18. Some vertex-cuts of G

Suppose that $X_{i} \cap L_{j} \neq \emptyset$ for some $i \in\{1,2, \ldots, n\}, j \in\{1,2,3\}$. By (4.7)(c), (4.13)(a) and (4.13)(d), any path joining $X_{i} \cap L_{j}$ and $L_{1} \cup L_{2} \cup L_{3}-W-L_{j}$ must use a vertex of W or Z or $X_{i} \Delta L_{j}$. Therefore, $\left(X_{i} \Delta L_{j}\right) \cup W \cup Z$ is a cutset of G separating $X_{i} \cap L_{j}$ from $L_{1} \cup L_{2} \cup L_{3}-W-L_{j}$.
4.19. We claim that $\left|X_{i}\right| \geq 3$ for $1 \leq i \leq n$

This claim is to be proved in several steps in this subsection.
(a) First we show that, for $1 \leq i \leq 3,1 \leq j \leq n$, if $\left|X_{j}\right|=1$, then $A_{i} \cap X_{j}=\emptyset$.

Suppose $A_{1} \cap X_{j} \neq \bar{\emptyset}$. Let $X_{j}=\{v\}$ and $N=N_{G}(v)$. Since G is $(k+2)$-connected, $|N| \geq k+2$. Hence $|N-W| \geq k+2-|W|$. Note that $\left|A_{1}\right| \leq k+1-|W|$ by (4.13)(e), this implies $N-A_{1}-W \neq \emptyset$. Take a vertex $x \in N-A_{1}-W$. Since $\left|X_{j}\right|=1$, we have $X_{j}=Y_{j}=\{v\}$ by (4.16). Note that $x v \in E(G), x$ is in A_{1} by the definition of A_{1}, a contradiction. Hence $A_{1} \cap X_{j}=\emptyset$.
(b) Second we show that, for $1 \leq i \leq 3,1 \leq j \leq n$, if $\left|X_{j}\right|=1$, then $A_{i} \cap N_{G}\left(X_{j}\right)=\emptyset$.

Suppose that $\left|X_{1}\right|=1$ and $x \in A_{1} \cap N_{G}\left(X_{1}\right)$. Hence, by (4.13)(b), $x \in X_{i}$ for some $i \neq 1$. Since $\left|X_{1}\right|=1$, by the definition of A_{1} (defined in (4.12)), $X_{1} \subseteq A_{1}$. This contradicts (4.19)(a) since $\left|X_{1}\right|=1$.
(c) Since $\left|X_{i}\right|$ is odd for each i (by (4.10)), let m be an integer such that $m \leq n$ with $\left|X_{i}\right|=1$ for $1 \leq i \leq m \leq n$ and $\left|X_{j}\right| \geq 3$ for $m<j \leq n$.
By the definition of A_{i} and (4.8), we have

$$
\begin{equation*}
\sum_{i=1}^{3}\left|A_{i}\right| \geq\left|L_{1} \cup L_{2} \cup L_{3}\right|-|W|=3 k-|M|-|W| \tag{1}
\end{equation*}
$$

Also, by (4.7)(a),

$$
\begin{equation*}
\sum_{m<j \leq n}\left|X_{j}\right| \leq 3 \sum_{m<j \leq n}\left\lfloor\frac{1}{2}\left|X_{j}\right|\right\rfloor \leq 3 \sum_{1 \leq j \leq n}\left\lfloor\frac{1}{2}\left|X_{j}\right|\right\rfloor \leq 3(k+1-|W|) \tag{2}
\end{equation*}
$$

Assume $X=X_{1} \cup X_{2} \cup \cdots \cup X_{m}$ and $N=N_{G}(X)-X$. Then we can get the following.
(i) $N \subseteq W \cup X_{m+1} \cup \cdots \cup X_{n}$ by (4.7)(b) and (4.16).
(ii) $N \cap A_{1}=N \cap A_{2}=N \cap A_{3}=\emptyset$ by (4.19)(b).
(iii) $|N| \geq k+2$ since N separates X from $A_{1} \cup A_{2} \cup A_{3}$ (by (4.19)(a) and (4.19)(b)) and G is ($\mathrm{k}+2$)-connected.

Hence, we have

$$
\begin{equation*}
|N|+\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right| \leq|W|+\sum_{i=m+1}^{n}\left|X_{i}\right| \tag{3}
\end{equation*}
$$

By (iii), (1)-(3), we have

$$
\begin{aligned}
(k+2)+(3 k-|M|-|W|) & \leq|W|+3(k+1-|W|) \\
& =3 k+3-2|W|
\end{aligned}
$$

Hence,

$$
|W| \leq 1+|M|-k
$$

By (4.8)(a),

$$
|W| \leq 1+|W|-k
$$

That is,

$$
k \leq 1
$$

This contradicts $k \geq 4$ (4.3) and completes the proof of (4.19).
4.20. We prove some inequalities for $|Z|$
(i)

$$
|Z| \leq 3 k+3-3|W|-\left|L_{1} \cup L_{2} \cup L_{3}-W\right|
$$

and the equality holds if and only if $\left|X_{j}\right|=3$ for every $j \in\{1,2, \ldots, n\}$.
(ii)

$$
|Z| \leq 3+|M|-2|W|
$$

and the equality holds if and only if $\left|X_{j}\right|=3$ for every $j \in\{1,2, \ldots, n\}$ and $W \subseteq L_{1} \cup L_{2} \cup L_{3}$.
Let $s=|Z|$. Then, by (4.17),

$$
\left|X_{1} \cup \cdots \cup X_{n}\right|=s+\left|L_{1} \cup L_{2} \cup L_{3}-W\right| .
$$

But, by (4.19), $\left|X_{j}\right| \leq 3\left\lfloor\frac{1}{2}\left|X_{j}\right|\right\rfloor$ for $1 \leq j \leq n$, and therefore

$$
3 \sum_{1 \leq j \leq n}\left\lfloor\frac{1}{2}\left|X_{j}\right|\right\rfloor \geq \sum_{1 \leq j \leq n}\left|X_{j}\right|=s+\left|L_{1} \cup L_{2} \cup L_{3}-W\right|
$$

with equality if and only if $\left|X_{j}\right|=3$ for any $j \in\{1,2, \ldots, n\}$. By (4.7)(a), we have

$$
3(k+1-|W|) \geq s+\left|L_{1} \cup L_{2} \cup L_{3}-W\right|
$$

That is,

$$
s \leq 3 k+3-3|W|-\left|L_{1} \cup L_{2} \cup L_{3}-W\right|
$$

and the equality holds if and only if $\left|X_{j}\right|=3$ for any $j \in\{1,2, \ldots, n\}$. That completes the proof of (4.20)(i).
Note that, by (4.8)(b), we have

$$
\left|L_{1} \cup L_{2} \cup L_{3}-W\right| \geq\left|L_{1} \cup L_{2} \cup L_{3}\right|-|W|=3 k-|M|-|W|
$$

and the equality holds if and only if $W \subseteq L_{1} \cup L_{2} \cup L_{3}$. Hence, by (4.20)(i),

$$
\begin{aligned}
s & \leq 3 k+3-3|W|-\left|L_{1} \cup L_{2} \cup L_{3}-W\right| \leq 3 k+3-3|W|-(3 k-|M|-|W|) \\
& =3+|M|-2|W|
\end{aligned}
$$

and the equality holds if and only if $W \subseteq L_{1} \cup L_{2} \cup L_{3}$ and $\left|X_{j}\right|=3$ for every $j \in\{1,2, \ldots, n\}$. This completes the proof of (4.20)(ii).
4.21. (i) $\left|A_{i} \cap X_{j}\right|<\frac{1}{2}\left|X_{j}\right|$ for $1 \leq j \leq n$ and $1 \leq i \leq 3$

Suppose that $\left|A_{1} \cap X_{1}\right| \geq \frac{1}{2}\left|X_{1}\right|$. Since $\left|X_{1}\right| \geq 3$ by (4.19), there exists a vertex $v \in A_{1} \cap X_{1}$. Since $\left|L_{2} \cup L_{3}-W\right| \geq$ $\left|L_{2} \cup L_{3}\right|-|W| \geq k+2-|\bar{W}|$ by $(4.8)(\mathrm{d})$, and $G-W$ is $(k+2-|W|)$-connected, there are $(k+2-|W|)$ paths of $G-\bar{W}$ between A_{1} and $L_{2} \cup L_{3}-W$, disjoint except possibly for v. Choose them with no internal vertex in A_{1}. By (4.13)(d), each has at least two vertices in X_{j} for some j, but at most $\left\lfloor\frac{1}{2}\left|X_{j}\right|\right\rfloor$ of them have two vertices in X_{j} for each $j \neq 1$. Note that by (4.7)(a), we have

$$
\sum_{2 \leq j \leq n}\left\lfloor\frac{1}{2}\left|X_{j}\right|\right\rfloor \leq k+1-|W|-\left\lfloor\frac{1}{2}\left|X_{1}\right|\right\rfloor
$$

Thus, at least $1+\left\lfloor\frac{1}{2}\left|X_{1}\right|\right\rfloor$ of them have two vertices in X_{1}. But each has only one vertex in A_{1}, and so has a vertex in X_{1} which does not belong to A_{1}, and all these vertices in $X_{1}-A_{1}$ are different. Hence $\left|X_{1}-A_{1}\right| \geq 1+\left\lfloor\frac{1}{2}\left|X_{1}\right|\right\rfloor$, a contradiction.
(ii) $\left|L_{i} \cap X_{j}\right|<\frac{1}{2}\left|X_{j}\right|$ for $1 \leq j \leq n$ and $1 \leq i \leq 3$ by (4.13)(a) and (4.21)(i).
4.22. We eliminate the case of $k=4$ and $|W|=3$

In this case, by (4.11)(a), $n \geq k-2=2$.
Moreover, by (4.7)(a), we have

$$
|W|+\sum_{1 \leq i \leq n}\left\lfloor\frac{1}{2}\left|X_{i}\right|\right\rfloor \leq k+1=5
$$

That is,

$$
\sum_{1 \leq i \leq n}\left\lfloor\frac{1}{2}\left|X_{i}\right|\right\rfloor \leq 2
$$

We have $n=2$ and $\left|X_{1}\right|=\left|X_{2}\right|=3$ (by (4.19)). Hence, $Z=\emptyset$ by (4.11)(b).
Next we claim that $\left|L_{i} \cap X_{j}\right| \neq 0$ for $i \in\{1,2,3\}$ and $j \in\{1,2\}$. For otherwise, we may assume that $L_{1} \cap X_{1}=\emptyset$. Then by (4.21)(ii), $\left|L_{2} \cap X_{1}\right| \leq 1$ and $\left|L_{3} \cap X_{1}\right| \leq 1$. This implies that $Z \supseteq X_{1}-\left(L_{1} \cup L_{2} \cup L_{3}\right)=X_{1}-L_{2} \cup L_{3} \neq \emptyset$. This contradicts that $Z=\emptyset$.

Therefore, by (4.21)(ii), we have $\left|L_{i} \cap X_{j}\right|=1$ for $i \in\{1,2,3\}$ and $j \in\{1,2\}$. And by (4.11)(b), we have $W=M$ and $W \cup X_{1} \cup X_{2}=L_{1} \cup L_{2} \cup L_{3}$. Hence, $\left|W \cap L_{i}\right|=2$ for $i \in\{1,2,3\}$.

Next, we will apply Lemma 3.5 to find a 6 -cluster in G traversing $L_{1} \cup L_{2} \cup L_{3}$.
Let $X_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}, X_{2}=\left\{y_{1}, y_{2}, y_{3}\right\}, W=\left\{z_{1}, z_{2}, z_{3}\right\}$, let $\left\{x_{i}, y_{i}\right\} \subseteq L_{i}$ for $i \in\{1,2,3\}$, and $z_{1} \in L_{2} \cap L_{3}, z_{2} \in L_{1} \cap L_{3}$, $z_{3} \in L_{1} \cap L_{2}$ (by (4.2)).

Hence, we get the description of graph G as in Lemma 3.5: $x_{i}, y_{i}, z_{i}(1 \leq i \leq 3)$ are distinct vertices of 6-connected graph G, and $L_{1}=\left\{x_{1}, y_{1}, z_{2}, z_{3}\right\}, L_{2}=\left\{x_{2}, y_{2}, z_{3}, z_{1}\right\}, L_{3}=\left\{x_{3}, y_{3}, z_{1}, z_{2}\right\}$ are 4-cliques, and there is a partition Y_{1}, Y_{2} of $V(G)-\left\{z_{1}, z_{2}, z_{3}\right\}$ with $X_{1} \subseteq Y_{1}, X_{2} \subseteq Y_{2}$, and $x_{i} y_{i}(1 \leq i \leq 3)$ are the only edges of G with one end in Y_{1} and the other in Y_{2}.

Therefore by Lemma 3.5, G has a 6 -cluster traversing $L_{1} \cup L_{2} \cup L_{3}$. This is a contradiction.
4.23. We claim that, for $1 \leq j \leq n$, if $\left|X_{j}\right|=3$ then $X_{j}=Y_{j}$

By (4.14), $|W| \leq 3$. By (4.15), it is obvious that $X_{j}=Y_{j}$ if $k \geq 5$ or $|W|<3$. Hence, the only remaining case is $k=4$ and $|W|=3$, which was eliminated in (4.22).
4.24
(i) We claim that if $v \in A_{i} \cap X_{j}$ for some $i \in\{1,2,3\}$ and some $j \in\{1,2, \ldots, n\}$, then $d_{Y_{j}-A_{i}}(v) \geq 2$, and the equality holds if and only if $d_{G}(v)=k+2, W \cup A_{i} \subseteq N_{G}(v) \cup\{v\}$ and $\left|A_{i}\right|=k+1-|W|$.

By the definition of A_{i} (4.12), we have

$$
N_{G}(v)-\left(Y_{j}-A_{i}\right) \subseteq A_{i} \cup W-\{v\} .
$$

Since G is $(k+2)$-connected and $\left|A_{i}\right| \leq k+1-|W|$ (by (4.13)(e)), we have:

$$
\left|N_{G}(v) \cap\left(Y_{j}-A_{i}\right)\right| \geq(k+2)-\left|A_{i} \cup W-\{v\}\right| \geq(k+2)-(k+1-|W|+|W|-1)=2
$$

and the equality holds if and only if $d(v)=k+2, W \cup A_{i} \subseteq N_{G}(v) \cup\{v\}$ and $\left|A_{i}\right|=k+1-|W|$.
(ii) We claim that if $v \in A_{i} \cap X_{j}$ and $\left|X_{j}\right|=3$ for some $i \in\{1,2,3\}$ and some $j \in\{1,2, \ldots, n\}$, then $d_{X_{j}}(v)=2$, $W \cup A_{i} \subseteq N_{G}(v) \cup\{v\}$ and $\left|A_{i}\right|=k+1-|W|$.

Note that $\left|X_{j}\right|=3$. By (4.23), we have $Y_{j}=X_{j}$, and therefore,

$$
d_{Y_{j}-A_{i}}(v)=d_{X_{j}-A_{i}}(v) \leq 2
$$

On the other hand, by $(4.24)(\mathrm{i})$, we have $d_{Y_{j}-A_{i}}(v) \geq 2$. Hence, $d_{Y_{j}-A_{i}}(v)=2$. By (4.24)(i) again, we are done.
4.25. We claim that if $\left|X_{j}\right|=3$ for some j then
(i) $\left|X_{j} \cap A_{i}\right|=1$ for each $i \in\{1,2,3\}$.
(ii) X_{j} induces a clique of G.
(iii) $W \subseteq N_{G}(v)$ for any $v \in X_{j}$.

Proof of (i): For otherwise, we may assume that $\left|X_{j} \cap A_{1}\right| \neq 1$. By (4.21)(i), $\left|X_{j} \cap A_{1}\right|=0,\left|A_{2} \cap X_{j}\right| \leq 1$ and $\left|A_{3} \cap X_{j}\right| \leq 1$. This implies that there exists $x \in X_{j}$, and $x \notin A_{1} \cup A_{2} \cup A_{3}$. Since $\left|X_{j}\right|=3$, we have $X_{j}=Y_{j}$ by (4.23), and by the definition of A_{i} (4.12), we have $N_{G}(x) \subseteq W \cup(Z-\{x\}) \cup\left(X_{j}-\{x\}\right)$. Note that, by (4.20)(ii), (4.14), we have

$$
|W|+|Z-\{x\}|+\left|X_{j}-\{x\}\right| \leq|W|+(3+|M|-2|W|-1)+2=4+|M|-|W| .
$$

Note that $|M| \leq|W|$ by (4.8)(a). Hence, we have $\left|N_{G}(x)\right| \leq 4$. This contradicts that G is ($k+2$)-connected where $k \geq 4$ (by (4.3)).

Proof of (ii) and (iii). (ii) and (iii) are immediate corollaries of (4.25)(i) and (4.24)(ii).
4.26. We claim that there exists some $j \in\{1,2, \ldots, n\}$ such that $\left|X_{j}\right| \geq 5$

By (4.19), we may assume $\left|X_{j}\right|=3$ for all $j \in\{1,2, \ldots, n\}$.
By (4.25)(i)-(ii), every vertex of $\left(L_{1}-W\right) \cap X_{j}$ (for all $j \in\{1,2, \ldots, n\}$) is adjacent to a vertex of $A_{2} \cap X_{j}$ and a vertex of $A_{3} \cap X_{j}$. By (4.25)(i) and (4.25)(iii), every vertex of $L_{1} \cap W$ is adjacent to some vertex of A_{2} and some vertex of A_{3}, hence, $\wp=\left\{u_{1}, u_{2}, \ldots, u_{k}, A_{2}, A_{3}\right\}$ is a $(k+2)$-cluster that traverses $L_{1} \cup L_{2} \cup L_{3}$ where $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\} \in L_{1}$. This is a contradiction.
4.27. We claim that $\left|X_{j}\right| \geq 5$ for every $j \in\{1,2, \ldots, n\}$

For otherwise, by (4.19), we may assume $\left|X_{1}\right|=3$. By (4.25)(i), $\left|A_{i} \cap X_{1}\right|=1$ for each $i \in\{1,2,3\}$. Hence, by (4.24)(ii), $\left|A_{i}\right|=k+1-|W|$ for each $i \in\{1,2,3\}$.

Furthermore, by (4.13)(b), (4.13)(c), we have

$$
|Z| \geq\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|-\left|L_{1} \cup L_{2} \cup L_{3}-W\right|=(3 k+3-3|W|)-\left|L_{1} \cup L_{2} \cup L_{3}-W\right|
$$

However, by (4.20)(i), we have

$$
|Z|=3 k+3-3|W|-\left|L_{1} \cup L_{2} \cup L_{3}-W\right|
$$

The equality of (4.20)(i) implies that $\left|X_{i}\right|=3$ for all $i \in\{1,2, \ldots, n\}$. This contradicts (4.26).

4.28. We show some inequalities for n

By (4.27) and (4.7)(a),

$$
\begin{equation*}
5 n \leq \sum_{1 \leq j \leq n}\left|X_{j}\right| \leq 2 *(k+1-|W|)+n=2 k+2+n-2|W| . \tag{4}
\end{equation*}
$$

The inequality (4) can be simplified as

$$
\begin{equation*}
2 n \leq k+1-|W| \tag{5}
\end{equation*}
$$

Note that the equality (4) (and (5), as well) holds if and only if $\left|X_{i}\right|=5$ for every i.

4.29. We claim that $n=k-2$

For otherwise, since $n \geq k-2$ by (4.11)(a), we may assume that $n \geq k-1$.
By (5), we have

$$
\begin{equation*}
2 k-2 \leq 2 n \leq k+1-|W| . \tag{6}
\end{equation*}
$$

That is,

$$
k \leq 3-|W|
$$

Note that $k \geq 4$ by (4.3). This is a contradiction.
4.30. The final step of the proof

By (4.29), $n=k-2$. By (4.11)(b), we have
$W=M \quad$ and $\quad L_{1} \cup L_{2} \cup L_{3}=W \cup X_{1} \cup \cdots \cup X_{n}$.
Hence,

$$
\begin{equation*}
Z=\emptyset \tag{7}
\end{equation*}
$$

By (5) of (4.28), we have
$2 k-4=2 n \leq k+1-|W|$.
That is,

$$
\begin{equation*}
k \leq 5-|W| \tag{8}
\end{equation*}
$$

Note that $k \geq 4$ by (4.3). Therefore, there are only two cases: $k=5$ and $k=4$ (by (7) and (8)).
Case 1: $k=5$. In this case, $|W|=0$. By (4.29), $n=k-2=3$. The equality of (5) of (4.28) implies that

$$
\left|X_{1}\right|=\left|X_{2}\right|=\left|X_{3}\right|=5 .
$$

By (4.21)(ii), without loss of generality, we assume $\left|L_{1} \cap X_{1}\right|=2$. By (4.18), ($X_{1} \Delta L_{1}$) is a vertex-cut of order at most 6 since $Z=\emptyset$ and $W=\emptyset$. This contradicts that G is $(k+2)$-connected where $k=5$.
Case 2: $k=4$. In this case, $n=k-2=2$ (by (4.29)). There are two subcases: $|W|=1$ and $|W|=0$ (by (8)).
Subcase $1:|W|=1$. The equality (5) of (4.28) implies that

$$
\left|X_{1}\right|=\left|X_{2}\right|=5 .
$$

Without loss of generality, we assume $W \subseteq L_{1}$ and $\left|L_{1} \cap X_{1}\right|=2$. By (4.18), ($X_{1} \Delta L_{1}$) is a vertex-cut of order at most 5 since $Z=\emptyset$ and $W \subseteq L_{1}$. This contradicts that G is $(k+2)$-connected where $k=4$.

Subcase $2:|W|=0$.
Since $Z=\emptyset$ by (7), we have

$$
\begin{equation*}
\sum_{j=1}^{n}\left|X_{j}\right|=\left|L_{1} \cup L_{2} \cup L_{3}\right|=3 k=12 \tag{9}
\end{equation*}
$$

Therefore, the only possibility in this subcase is that $\left|X_{1}\right|=5$ and $\left|X_{2}\right|=7$ (by (4.10) and (4.27)).
Without loss of generality, we assume $\left|L_{1} \cap X_{1}\right|=2$. By (4.18), ($X_{1} \Delta L_{1}$) is a vertex-cut of order at most 5 since $Z=\emptyset$ and $W=\emptyset$. This contradicts that G is $(k+2)$-connected where $k=4$.

This completes the proof of main theorem.

5. Proof of Lemma 3.5

The following two lemmas will be useful in the proof of Lemma 3.5.
Lemma 5.1 (Whitney [4]). Any two planar embeddings of a 3-connected graph are equivalent.
Let $G=(V, E)$ is a graph and $A \subseteq V(G)$, we denote the set of vertices on $V(G)-A$ which are adjacent to some vertex in A by $\Upsilon(A)$. That is $\Upsilon(A)=N(A)-A$.

Lemma 5.2 (Seymour [16], Thomassen [18]). Let $s_{1}, t_{1}, s_{2}, t_{2}$ be distinct vertices of a graph $G=(V, E)$. Then just one of the following is true:
(i) there are paths joining s_{1} to t_{1} and s_{2} to t_{2} respectively, vertex-disjoint.
(ii) for some $k \geq 0$ there are pairwise disjoint sets $A_{1}, \ldots, A_{k} \subseteq V(G)-\left\{s_{1}, s_{2}, t_{1}, t_{2}\right\}$ such that
(a) for $i \neq j, \Upsilon\left(A_{i}\right) \cap A_{j}=\emptyset$,
(b) for $1 \leq i \leq k,\left|\Upsilon\left(A_{i}\right)\right| \leq 3$,
(c) if \widetilde{G} is the graph obtained from G by (for each i) deleting A_{i} and adding new edges joining every pair of distinct vertices in $\Upsilon\left(A_{i}\right)$, and also for $j=1,2$ adding an edge e_{j} joining s_{j} to t_{j}, then \widetilde{G} may be drawn in the plane with no pairs of edges crossing except e_{1}, e_{2} which cross once.
Proof of Lemma 3.5. Let G be a counterexample to the lemma with least number of vertices. Let $W=\left\{z_{1}, z_{2}, z_{3}\right\}, X_{1}=$ $\left\{x_{1}, x_{2}, x_{3}\right\}, X_{2}=\left\{y_{1}, y_{2}, y_{3}\right\}$. Let $\Im_{i j}=\left\{z_{i}\right\} \cup X_{j}$ and $G_{i j}$ be the subgraph induced by $\left\{z_{i}\right\} \cup Y_{j}$ where $1 \leq i \leq 3$ and $1 \leq j \leq 2$. Let f_{1}, f_{2}, f_{3} be the edges with ends $z_{2} z_{3}, z_{3} z_{1}$, and $z_{1} z_{2}$ respectively.

5.1. We claim that $G-\left\{f_{1}, f_{2}, f_{3}\right\}$ is not planar

Since G is 6-connected, $|E(G)| \geq 3|V(G)|$. Therefore $\left|E\left(G-\left\{f_{1}, f_{2}, f_{3}\right\}\right)\right| \geq 3|V(G)|-3$. Note that a planar graph with $n \geq 3$ vertices has at most $3 n-6$ edges. Hence $G-\left\{f_{1}, f_{2}, f_{3}\right\}$ is not planar.

5.2

The strategy of the proof is to prove that $G^{\prime}=G-\left\{f_{1}, f_{2}, f_{3}\right\}$ is planar (hence contradicts 5.1). The planarity of G^{\prime} is yielded by showing that each $G_{i}=G^{\prime}\left[W \cup Y_{i}\right](1 \leq i \leq 2)$ has a planar embedding with vertices $z_{1}, x_{2}, z_{3}, x_{1}, z_{2}, x_{3}$ for $i=1$ (or $z_{1}, y_{2}, z_{3}, y_{1}, z_{2}, y_{3}$ for $i=2$, respectively) around its exterior face (Lemma 5.2 is applied here). And the planar embedding of G_{i} is constructed from the unique embedding of the 3-connected graph $H_{i}=Y_{i} \cup E_{i}(1 \leq i \leq 2)$ where $E_{1}=\left\{x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}\right\}$, and $E_{2}=\left\{y_{1} y_{2}, y_{1} y_{3}, y_{2} y_{3}\right\}$, and planar embeddings of other subgraphs of $G_{i} \cup E_{i}$.

5.3. We claim that $\left|Y_{1}\right|,\left|Y_{2}\right| \geq 4$

For otherwise, we may assume $\left|Y_{1}\right|=3$. That is, $Y_{1}=X_{1}$. Since G is 6-connected, $d_{G}\left(x_{1}\right) \geq 6$. Hence $W \cup\left\{y_{1}, x_{2}, x_{3}\right\} \subseteq$ $N_{G}\left(x_{1}\right)$. With the similar argument, we have $W \cup\left\{y_{3}, x_{1}, x_{2}\right\} \subseteq N_{G}\left(x_{3}\right)$ and $W \cup\left\{y_{2}, x_{1}, x_{3}\right\} \subseteq N_{G}\left(x_{2}\right)$. Therefore, $\wp=\left\{\left\{x_{1}\right\},\left\{x_{2}\right\},\left\{x_{3}\right\},\left\{z_{1}\right\},\left\{z_{2}\right\},\left\{z_{3}\right\}\right\}$ is a 6-cluster traversing $\left\{x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}, x_{3}, y_{3}, z_{3}\right\}$, a contradiction.

5.4. We claim that the subgraph induced by Y_{i} is connected for $i=1,2$

For otherwise, we assume that the subgraph induced by Y_{1} is not connected. Let D be a component not containing x_{1}, then $\left\{x_{2}, x_{3}, z_{1}, z_{2}, z_{3}\right\}$ is a 5-cutset separating D and Y_{2}, it contradicts that G is 6-connected.

5.5. We claim that there is no 4-cluster in $G_{i j}$ traversing $\mathfrak{I}_{i j}$ where $1 \leq i \leq 3,1 \leq j \leq 2$

For otherwise, we may assume that there is a 4-cluster \wp_{1} in G_{11} traversing \Im_{11}. Let $\wp=\wp_{1} \cup\left\{\left\{z_{2}, z_{3}\right\}\right.$, $\left.\left\{Y_{2}\right\}\right\}$, then \wp is a 6 -cluster in G traversing $\left\{x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}, x_{3}, y_{3}, z_{3}\right\}$, a contradiction.

5.6. We claim that both X_{1} and X_{2} are independent sets of G

For otherwise, without loss of generality, we assume that $x_{1} x_{2} \in E(G)$. There is a vertex $x \in Y_{1}-X_{1}$ by (5.3) and there are 4 internally disjoint paths $P_{x_{1}}, P_{x_{2}}, P_{x_{3}}, P_{z_{3}}$ of $G-\left\{z_{1}, z_{2}\right\}$ since $G-\left\{z_{1}, z_{2}\right\}$ is 4-connected where P_{u} is the path joining x and $u \in\left\{x_{1}, x_{2}, x_{3}, z_{3}\right\}$.

Now since $x_{i} y_{i}(1 \leq i \leq 3)$ are the only edges of G with one end in Y_{1} and the other in Y_{2}, we have $P_{u} \cap Y_{2}=\emptyset$ where $u \in\left\{x_{1}, x_{2}, x_{3}, z_{3}\right\}$. Hence $\wp=\left\{P_{x_{1}}-x, P_{x_{2}}-x, P_{z_{3}}-x, P_{x_{3}}\right\}$ is a 4-cluster in G_{31} traversing \mathfrak{I}_{31}. This contradicts (5.5).

5.7. We claim that there are no two vertex-disjoint paths in G_{11} joining z_{1} to x_{1} and x_{2} to x_{3} respectively

For otherwise, let P_{1} and P_{2} be the paths joining z_{1} to x_{1} and x_{2} to x_{3} respectively. Let A_{1} and A_{2} be disjoint fragments of the subgraph induced by Y_{1} with $P_{1}-\left\{z_{1}\right\} \subseteq A_{1}, P_{2} \subseteq A_{2}$, and $A_{1} \cup A_{2}$ maximal. Since the subgraph induced by Y_{1} is connected by (5.4), A_{1} and A_{2} are adjacent. Therefore $\wp=\left\{\left\{z_{1}\right\},\left\{z_{2}\right\},\left\{z_{3}\right\}, A_{1}, A_{2}, Y_{2}\right\}$ is a 6-cluster traversing $\left\{x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}, x_{3}, y_{3}, z_{3}\right\}$, a contradiction.

5.8

(i) We claim that G_{11} can be drawn in a plane so that every vertex in \Im_{11} is incident with the infinite region and $z_{1}, x_{2}, x_{1}, x_{3}$ are around its exterior face in this order, and this embedding is denoted by π_{11}.

By Lemma 5.2 and (5.7), there exists some $k \geq 0$ and there are pairwise disjoint sets $A_{1}, \ldots, A_{k} \subseteq V(G)-\left\{z_{1}, x_{2}, x_{1}, x_{3}\right\}$ such that
(a) for $i \neq j, \Upsilon\left(A_{i}\right) \cap A_{j}=\emptyset$,
(b) for $1 \leq i \leq k,\left|\Upsilon\left(A_{i}\right)\right| \leq 3$,
(c) if $\widetilde{G_{11}}$ is the graph obtained from G_{11} by deleting A_{i} and adding new edges joining every pair of distinct vertices in $\Upsilon\left(A_{i}\right)$, and adding an edge e_{1} joining z_{1} to x_{1} and an edge e_{2} joining x_{2} to x_{3}, then $\widetilde{G_{11}}$ may be drawn in the plane with no pairs of edges crossing except e_{1}, e_{2} which cross once.

We claim that $k=0$. For otherwise, $\Upsilon\left(A_{k}\right) \cup\left\{z_{2}, z_{3}\right\}$ is a cut set of order at most 5 separating A_{k} and Y_{2}, it contradicts that G is 6-connected.

Hence we have $G_{11}=\widetilde{G_{11}}-\left\{e_{1}, e_{2}\right\}$, and result follows.
With the similar argument, we have
(ii) G_{21} can be drawn in a plane so that $z_{2}, x_{1}, x_{2}, x_{3}$ are around its exterior face in this order, and this embedding is denoted by π_{21}.
(iii) G_{31} can be drawn in a plane so that $z_{3}, x_{1}, x_{3}, x_{2}$ are around its exterior face in this order, and this embedding is denoted by π_{31}.
5.9. Let G_{i} be the graph obtained from the subgraph induced by $W \cup Y_{i}$ and deleting edges f_{1}, f_{2}, f_{3} for $1 \leq i \leq 2$, and let G_{1}^{+}be the graph obtained from G_{1} by adding edges $x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}$, let G_{2}^{+}be the graph obtained from G_{2} by adding edges $y_{1} y_{2}, y_{1} y_{3}, y_{2} y_{3}$

In next few subsections, we are to show that G_{1}^{+}has a planar embedding such that the triangle $x_{1} x_{2} x_{3} x_{1}$ is a facial circuit.

5.10

(i) Let $H_{h 1}$ be the graph obtained from G_{1}^{+}by deleting z_{i} and z_{j} where $\{h, i, j\}=\{1,2,3\}$. Obviously $H_{h 1}$ is also the graph obtained from $G_{h 1}$ by adding edges $x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}$. By (5.8), $G_{h 1}$ has an embedding $\pi_{h 1}$ with $\left\{x_{i}, x_{h}, x_{j}, z_{h}\right\}$ in its exterior face. Hence $\pi_{h 1}$ can also be considered as an embedding of $H_{h 1}$ with the triangle $x_{1} x_{2} x_{3}$ as the exterior face. We denote this embedded graph by $\pi_{h 1}\left(H_{h 1}\right)$.
(ii) Let H_{1} be the graphs obtained from the subgraph induced by Y_{1} by adding edges $x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}$. Obviously, H_{1} can also be obtained from $H_{h 1}$ by deleting z_{h} for $h \in\{1,2,3\}$. Hence $\pi_{h 1}$ can also be considered as an embedding of H_{1}, and we denote this embedded graph by $\pi_{h 1}\left(H_{1}\right)$.

5.11. We claim that H_{1} is a 3-connected planar graph

Planarity is an immediate conclusion from (5.10)(ii). Next we will show that H_{1} is 3 -connected.
For otherwise, we assume that H_{1} is not 3-connected. Let A be a cut set of order less than 3. Since $\left\{x_{1}, x_{2}, x_{3}\right\}$ induces a clique in the graph H_{1}, let D be a component of $H_{1}-A$ with $x_{i} \notin D$ for every $i \in\{1,2,3\}$. Then $A \cup\left\{z_{1}, z_{2}, z_{3}\right\}$ is a cutset of G of order at most 5 separating D and Y_{2}, it is a contradiction.
5.12. By Lemma 5.1, H_{1} has only one embedding π_{0}. That is, $\pi_{0}\left(H_{1}\right)=\pi_{h 1}\left(H_{1}\right)$ for each $h \in\{1,2,3\}$.

5.13. (i) We claim that G_{1}^{+}has a planar embedding such that the triangle $x_{1} x_{2} x_{3} x_{1}$ is a facial circuit

Let $C_{i j}$ be the facial circuit of the embedded graph $\pi_{0}\left(H_{1}\right)$ containing the edge $x_{i} x_{j}$ other than the triangle $x_{1} x_{2} x_{3} x_{1}$. Let $F_{i j}$ be the face of $\pi_{0}\left(H_{1}\right)$ bounded by $C_{i j}$ where $1 \leq i<j \leq 3$.

By (5.12), $\pi_{0}\left(H_{1}\right)=\pi_{11}\left(H_{1}\right)$, and by (5.10) (ii), $\pi_{11}\left(H_{1}\right)$ is obtained from $\pi_{11}\left(H_{11}\right)$ by deleting the vertex z_{1}, hence z_{1} must be inside the face F_{23} of $\pi_{0}\left(H_{1}\right)$, and all neighborhoods of z_{1} must be in the facial circuit C_{23}. Similarly, for each $\{h, i, j\}=\{1,2,3\}$, all neighborhoods of z_{h} must be in the facial circuit $C_{i j}$.

Note that $F_{i j}$'s are distinct for $1 \leq i<j \leq 3$ since H_{1} is 3-connected by (5.11). Now we can get a planar embedding of G_{1}^{+} by adding the vertex z_{h} and edges $z_{h} u$ into the face $F_{i j}$ where $u \in N_{G}\left(z_{h}\right) \cap Y_{1}$.

With the similar argument, we have
(ii) G_{2}^{+}has a planar embedding such that the triangle $y_{1} y_{2} y_{3} y_{1}$ is a facial circuit.

5.14. The final step of the proof

By (5.13) and (5.9), G_{i} is planar with triangle $z_{1} z_{2} z_{3}$ as the exterior face.
Now we identify z_{i} of G_{1} to z_{i} of G_{2} where $1 \leq i \leq 3$, and join x_{i} of G_{1} to y_{i} of G_{2}, we get planar graph $G-\left\{f_{1}, f_{2}, f_{3}\right\}$, it contradicts (5.1).

This completes the proof of this lemma.

Acknowledgement

The second author's research was partially supported by the National Security Agency under Grant MDA 904-01-1-0022.

References

[1] K. Appel, W. Haken, Every planar map is four colorable, Part I. Discharging, Illinois J. Math. 21 (1977) 429-490.
[2] K. Appel, W. Haken, J. Koch, Every planar map is four colorable, Part II. Reducibility, Illinois J. Math. 21 (1977) 491-567.
[3] G. Chartrand, D.P. Geller, T. Hedetniemi, Graphs with forbidden subgraphs, J. Combin. Theory 10 (1971) 12-41.
[4] Reinhard Diestel, Graph Theory, 2nd ed., Springer-Verlag, New York, 1997, pp. 79-80.
[5] G.A. Dirac, A property of 4-chromatic graphs and some remarks on critical graphs, J. London Math. Soc. 27 (1952) 85-92.
[6] H. Hadwiger, Über eine Klassifikation der Streckenkomplexe, Vierteljahrsschr. Naturforsch. Ges. Zürich 88 (1943) 133-142.
[7] L.K. Jørgensen, Contractions to K_{8}, J. Graph Theory 18 (1994) 431-448.
[8] K. Kawarabayashi, Minors in 7-chromatic graphs, preprint.
[9] K. Kawarabayashi, R. Luo, J. Niu, C.-Q. Zhang, On structure of k-connected graphs without K_{k}-minor, Europ. J. Combin. 26 (2005) 293-308.
[10] K. Kawarabayashi, B. Toft, Any 7-chromatic graph has K_{7} or $K_{4,4}$ as a minor, Combinatorica 25 (2005) 327-353.
[11] W. Mader, Homomorphiesätze für Graphen, Math. Ann. 178 (1968) 154-168.
[12] W. Mader, Homomorphieeigenschaften und mittlere Kantendichte von Graphen, Math Ann. 174 (1967) 265-268.
[13] W. Mader, Über die Maximalzahl kreuzungsfreier H-Wege, Arch. Math 31 (1978) 387-402.
[14] N. Robertson, D.P. Sanders, P.D. Seymour, R. Thomas, The four-color theorem, J. Combin. Theory Ser. B. 70 (1997) 2-44.
[15] N. Robertson, P.D. Seymour, R. Thomas, Hadwiger conjecture for K_{6}-free graphs, Combinatorica 13 (1993) 279-361.
[16] P.D. Seymour, Disjoint paths in graphs, Combinatorica 29 (1980) 293-309.
[17] Z. Song, R. Thomas, The extremal function for K_{9}-minor, J. Combin. Theory Ser. B. 96 (2006) 240-252.
[18] C. Thomassen, 2-linked graphs, Europ. J. Combin. 1 (1980) 371-378.
[19] B. Toft, On separating sets of edges in contraction-critical graphs, Math Ann. 196 (1972) 129-147.
[20] K. Wagner, Über eine Eigenschaft der ebenen Komplexe, Math. Ann. 114 (1937) 570-590.
[21] D.R. Woodall, Improper colourings of graphs, in: Graph Colourings, in: Pitman Research Notes, vol. 218, Longman, 1990, pp. 45-63.

[^0]: * Corresponding author.

 E-mail addresses: niu@math.wvu.edu (J. Niu), cqzhang@math.wvu.edu (C.-Q. Zhang).

