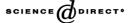


Available online at www.sciencedirect.com



Discrete Mathematics 268 (2003) 199-206

www.elsevier.com/locate/disc

Chords of longest circuits in 3-connected graphs[☆]

Xuechao Lia, Cun-Quan Zhangb,*

^a Division of Academic Enhancement, The University of Georgia, 203 Milledge Hall,
Athens, GA 30602-5554, USA

^b Department of Mathematics, West Virginia University, P.O. Box 6310,
Morgantown, WV 26506-6310, USA

Received 7 December 1999; received in revised form 11 June 2002; accepted 24 June 2002

Abstract

Thomassen conjectured that every longest circuit of a 3-connected graph has a chord. The conjecture is verified in this paper for projective planar graphs with minimum degree at least 4. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Longest circuit; Chord; Projective plane

1. Introduction

Thomassen [1] conjectured that every longest circuit of a 3-connected graph has a chord. In 1987, Zhang [6] proved that any longest circuit of a 3-connected planar graph G has a chord if G is cubic or $\delta \geqslant 4$. In 1997, Carsten Thomassen [4] proved that every longest circuit in 3-connected cubic graphs has a chord. In this paper, we extend a result of [6] for projective plane.

Theorem 1.1. Let G be a 3-connected graph embedded in a projective plane with $\delta \geqslant 4$. Then every longest circuit of G must have a chord.

E-mail address: cqzhang@math.wvu.edu (C.-Q. Zhang).

 $^{^{\}mbox{\tiny \dot{p}}}$ Partially supported by the National Security Agency under Grants MDA904-00-1-0061 and MDA904-01-1-0022.

^{*} Corresponding author.

2. Terminology and notation

Throughout this paper, we consider finite simple graphs with no loops or multiple edges. For a graph G = (V, E), we use V(G) and E(G) to denote the vertex set and the edge set, respectively. An edge e is called a chord of a circuit if e is not an edge of the circuit and both endvertices of e are on the circuit.

Let P be a subgraph of a graph G. A P-bridge of G is either an edge of $G \setminus E(P)$ with both ends on P or a subgraph of G induced by the edges in a component of $G \setminus V(P)$ and all edges from that component to P. For a P-bridge B of G, the vertices in $B \cap P$ are the attachments of B (on P). Define $A(B) = V(B \cap P)$ and I(B) = V(B) - A(B).

Let G be a graph embedded in a surface S. A face of G in S is a connected component of S-G. The set of edges and vertices contained in the closure of a face F are denoted by E(F) and V(F), respectively.

3. Definitions and lemmas

3.1. Tutte circuits

Definition 3.1. Let G be a graph embedded in a surface and let C be a circuit of G and $\mathscr{F} = \{F_1, \ldots\}$ be a set of faces incident with C. Then the circuit C is called an \mathscr{F} -Tutte circuit if every C-bridge of G has at most three attachments and every C-bridge of G containing an edge incident with some member of \mathscr{F} has at most two attachments.

Lemma 3.2 (Tutte [5], or see Ore [2]). Let G be a 2-connected planar graph, let e_1 be an edge of G, let F_1 and F_2 be the two faces incident with e_1 and let e_2 be an edge on the boundary of F_1 and adjacent with e_1 . Then there is an $\{F_1, F_2\}$ -Tutte circuit C_T containing both e_1 and e_2 .

Lemma 3.3 (Thomas and Yu [3]). Let G be a 2-connected graph embedded in a projective plane, let R be a face of G, and let $e \in E(R)$. Then there exists an $\{R\}$ -Tutte circuit C_T in G such that

- (i) $e \in E(C_T)$ and
- (ii) every C_T -bridge that contains a non-contractible circuit is edge-disjoint from R.

3.2. Projective plane and cross caps

A projective plane \mathscr{P} is a surface obtained from a closed disk by identifying points at the ends of each diameter. Note that the descriptions of a projective plane \mathscr{P} are not unique. We would like to distinguish the projective plane and its representations. A representation of \mathscr{P} , denoted by \mathscr{P}_{ϕ} and called a cross cap with boundary ϕ^* , is the following way of describing the surface \mathscr{P} that \mathscr{P} is obtained from a closed disk with boundary ϕ^* by identifying points of ϕ^* at the ends of each diagonal. After

identification of diagonally opposite points, the boundary of the closed disk becomes a closed non-contractible curve in the projective plane.

Let G be a graph embedded in a projective plane \mathscr{P} , and $C = v_1 v_2 \cdots v_r v_1$ be a non-contractible circuit of G. The circuit C is considered as a non-contractible closed curve of \mathscr{P} . There is an embedding of G in \mathscr{P} such that the boundary of the cross cap (described in the previous paragraph) is a "circuit" $C^* = v'_1 \cdots v'_r v''_1 \cdots v''_r v'_1$ where v'_i and v''_i are the copies of the same vertex v_i of the circuit C. This is a representation of \mathscr{P} as a cross cap with the boundary C^* (denoted by \mathscr{P}_C).

Let a graph G be embedded in a surface S and \mathscr{F} be the set of all faces of G in S. Note that different embeddings of a graph G in the same surface S may have different sets of faces. So, we say two embeddings of G in the surface S are the *same* if they have *same* set of faces.

Lemma 3.4. Let G be a graph embedded in a projective plane \mathcal{P} . Let ϕ be a closed non-contractible curve of \mathcal{P} . Then the projective plane \mathcal{P} has a representation \mathcal{P}_{ϕ} with ϕ^* as its boundary of a closed disk, and the embedding of G remains the same in \mathcal{P} .

Lemma 3.5. Let a graph G be embedded in a projective plane \mathcal{P} . If there is a non-contractible curve ϕ of \mathcal{P} such that the intersection of G and ϕ consists of at most one point, then G is a planar graph.

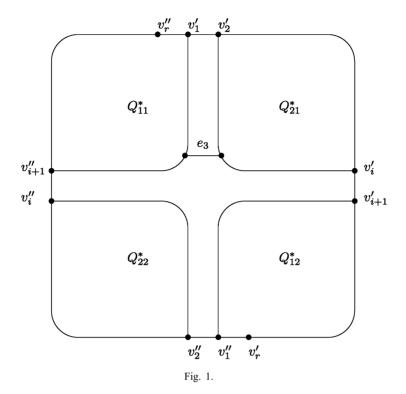
Lemma 3.6. Let G be a 3-connected graph embedded in a projective plane. Assume that G has a 3-edge-cut T and Q_1 , Q_2 are the components of $G \setminus T$. For each $\{i,j\} = \{1,2\}$, let H_i be the graph obtained from G by contracting Q_j . Then one of H_1 and H_2 is planar.

Proof. There is nothing to prove if G itself is planar. So, assume that G is not planar and has a non-contractible circuit.

- (I) Assume that G has a non-contractible circuit C such that $T \cap E(C) = \emptyset$, then, without loss of generality, let Q_1 be the component of $G \setminus T$ such that $E(C) \cap Q_1 = \emptyset$. So, by Lemma 3.4, in the cross cap \mathscr{P}_C (the representation of \mathscr{P} with C as the boundary of the cross cap), Q_1 contains no points of the boundary of the cross cap, and therefore, H_1 is a planar graph which is embedded in the open disk $\mathscr{P}_C \setminus C$.
- (II) By I, we assume that every non-contractible circuit of G must intersect both Q_1 and Q_2 . Let $T = \{e_1, e_2, e_3\}$ and C be a non-contractible circuit of G.

Assume that $T \cap E(C) = \{e_1, e_2\}$ where $e_1 = v_1 v_2$, $e_2 = v_i v_{i+1}$ and $v_1, v_{i+1} \in Q_1$, $v_2, v_i \in Q_2$. Without considering the cross cap, the graph G in the projective plane can be viewed as a planar graph G^* on a closed disk with C^* as the boundary of the disk (hence, v'_μ and v''_μ are viewed as "different" vertices in cross cap \mathscr{P}_C , where $v'_1v'_2, v''_1v''_2, v''_iv''_{i+1}, v''_iv''_{i+1}$, are copies of $e_1 = v_1v_2, e_2 = v_iv_{i+1}$. Let $G_x^* = G^* \setminus \{v'_1v'_2, v''_1v''_2, v''_1v''_{i+1}, v''_iv''_{i+1}, v''_iv''_{i+1}, v''_iv''_{i+1}, e_3\}$ and let Q_i^* be the subgraph of G_x^* corresponding to Q_i of G (i = 1, 2).

(III) In the planar graph G_x^* , if there exists a $v_\mu'v_\mu''$ -path P contained in some Q_μ^* for some $\mu \in \{1,2\}$, then Q_i contains a closed non-contractible circuit $v_\mu P v_\mu$ (v_μ' and v_μ'' are copies of v_μ in G). But, this contradicts to the assumption (in II) that no non-



contractible circuit is completely contained in one component of $G \setminus T$. So, we assume that both Q_1^* and Q_2^* are disconnected in the planar graph G_x^* .

Let those components of Q_1^* and Q_2^* in G_x^* be Q_{11}^* , Q_{12}^* ($\subseteq Q_1^*$), and Q_{21}^* , Q_{22}^* ($\subseteq Q_2^*$), respectively, such that $v_{i+1}'' \cdots v_r'' v_1' \subseteq Q_{11}^*$, $v_{i+1}' \cdots v_r' v_1'' \subseteq Q_{12}^*$, $v_2' \cdots v_i' \subseteq Q_{21}^*$, $v_2'' \cdots v_i'' \subseteq Q_{22}^*$ respectively. Without loss of generality, let $e_3(\in T)$ be an edge joining Q_{11}^* and Q_{21}^* (see the Fig. 1).

(IV) Let ϕ be a closed non-contractible curve of the projective plane crossing through the edges $e_2 = v_i'' v_{i+1}'' = v_i' v_{i+1}'$, but no any other point of G since e_3 is the only edge joining Q_{11}^* and Q_{21}^* in $G_x^* \setminus \{v_1 v_2, v_i v_{i+1}\}$ (see Fig. 1).

Thus, the projective plane \mathscr{P} is represented as a cross cap \mathscr{P}_{ϕ} (described in the first paragraph of Subsection 3.2 and in Lemma 3.4) with ϕ^* as the boundary of the cross cap, the corresponding non-contractible curve ϕ crosses only one edge $v_i v_{i+1}$ of G, but not others. By Lemma 3.5, G is a planar graph which contradicts the assumption that G is not planar. \square

Definition 3.7. A subset S of V(G) is called a *separator* of G if G has two subgraphs H_1 and H_2 such that $G = H_1 \cup H_2$ and $H_1 \cap H_2 = S$. Denote it by $[H_1, H_2]$.

Lemma 3.8. Let G be a 3-connected graph embedded in a projective plane. Assume that G has a separator S with |S| = 3, $G = G_1 \cup G_2$ and $G_1 \cap G_2 = S$. Then one of G_i (i = 1, 2) must be planar.

Proof. Let $S = \{x_1, x_2, x_3\} = [G_1, G_2]$. Let G'_1 be a graph obtained from G_1 by replacing x_i with x'_i . Let G'_2 be a graph obtained from G_2 by replacing x_i with x''_i . Let G' be a new graph obtained from G'_1 and G'_2 by adding edges $x'_i x''_i$ (i = 1, 2, 3). Note that three edges $\{e_1, e_2, e_3\}$ is a 3-edge-cut of G'. By Lemma 3.6, one of G'_1 and G'_2 must be planar. Thus, one of G_1 and G_2 must be planar. \square

4. Proof of Theorem 1.1

Since the same result of this theorem for planar graph was solved in [6], we pay attention to only graphs in the projective plane. Let C be a chordless longest circuit of G that satisfies the hypotheses of the theorem.

A vertex subset S is called a *separating* 3-vertex-cut with respect to C if S separates V(G) into two sets of vertices V' and V'' such that C intersects both V' and V'' where |S| = 3. C is separable if there is a separating 3-vertex-cut with respect to C.

- I. We claim that C is separable. Assume not, that is, C is not separable.
 - (i) We first show that every edge of G is incident with two distinct faces. If not, then, there is a closed non-contractible curve φ of projective plane P that intersects with G only at one point of e, for some edge e of G. By Lemma 3.5, G is planar. Since we consider only non-planar graphs, every edge of G is incident with two distinct faces.
 - So we can choose the edge $e \in E(C)$ and let F be a face incident with e such that $E(F) \neq E(C)$.
 - (ii) For the face F, there exists an $\{F\}$ -Tutte circuit C_T of G containing e by Lemma 3.3.
 - (iii) We claim that $V(C) \setminus V(C_T) \neq \emptyset$.
 - (iii(a)) Case 1: $E(F) = E(C_T)$. Then $E(C_T) \neq E(C)$ by (i). If $V(C) \subseteq V(C_T)$, then $V(C_T) = V(C)$ since C is a longest circuit of G. Thus, by (i), all the edges in $E(C_T) \setminus E(C)$ must be chords of C, contradicting the assumption that C is chordless.
 - (iii(b)) Case 2: $E(F) \neq E(C_T)$. Then C_T has some chords by the definition of $\{F\}$ -Tutte-circuit and since G is 3-connected. If $V(C) \subseteq V(C_T)$, then $V(C_T) = V(C)$ since C is a longest circuit of G. Let $E_1 = E(G[V(C)])$ and $E_2 = E(G[V(C_T)])$. Here $E_1 = E_2$ since $V(C) = V(C_T)$. This implies that $|E_1 \setminus E(C)|$ is the same as the number of chords of C_T (which equals $|E_2 \setminus E(C_T)|$). Note that the $\{F\}$ -Tutte-circuit C_T does have chords. This contradicts C being chordless.
 - (iv) We claim that the $\{F\}$ -Tutte circuit C_T has a bridge B such that $I(B) \cap V$ $(C) \neq \emptyset$. If not, that is, every bridge B of C_T contains no vertex of C. Then $V(C) \subseteq V(C_T)$. This is in contradiction with (iii).
 - (v) By (iv), let B be a non-chord bridge of the $\{F\}$ -Tutte circuit C_T with

$$I(B) \cap V(C) \neq \emptyset. \tag{1}$$

Since C is not separable, the 3-vertex-cut A(B) (the attachments of B) cannot separate vertices of V(C). Thus,

$$V(C) \subseteq A(B) \cup I(B) \tag{2}$$

and

$$V(C_{\mathrm{T}}) \subseteq G \setminus I(B),$$
 (3)

$$V(C) \cap V(C_{\mathsf{T}}) \subseteq A(B). \tag{4}$$

(vi) Let $A(B) = \{x, y, z\}$. Note that the edge e is in both C and C_T . Let e = xy. Here, $x, y \in V(C) \cap V(C_T)$ since $e \in E(C) \cap E(C_T)$. Furthermore, we have that

$$z \in V(C) \tag{5}$$

for otherwise, $V(C) \cap V(C_T) = \{x, y\}$ and we have a circuit $xCyC_Tx$ longer than C, a contradiction.

- (vii) We claim that $|V(C_T)| > 3$. If $|V(C_T)| = 3$, then, by (vi), $V(C_T) = A(B) = V(C_T) \cap V(C)$. Since $V(C) \setminus V(C_T) \neq \emptyset$ (by (iii)), $C \neq C_T$, and therefore $E(C_T) \setminus E(C) \neq \emptyset$. Hence, each edge of $E(C_T) \setminus E(C)$ is a chord of C, a contradiction.
- (viii) Let Q_1 be the segment of C_T joining the vertices y and z but not containing x, and let Q_2 be the segment of C_T joining the vertices z and x but not containing y.

By (5), $z \in V(C)$ and C_T is of length $\geqslant 4$ by (vii). Therefore, either the segment $Q_1 = yC_Tz$ or the segment $Q_2 = zC_Tx$ has at least one vertex v that is not in C. Say, $v \in Q_2 \setminus V(C)$. Since G is 3-connected, there is a path P joining $Q_2 \setminus \{x,z\}$ and $Q_1 \setminus \{z\}$ in $G \setminus \{x,z\}$. Choose P to be internally disjoint from $Q_2 \cup Q_1$ and as short as possible. Let $P = u' \cdots u''$ with $u' \in Q_2 \setminus \{x,z\}$ and $u'' \in Q_1 \setminus \{z\}$. By the choice of P, we have that $[V(P) \setminus \{y\}] \cap I(B) = \emptyset$, then $u'Q_2xCyQ_1u''Pu'$ is a circuit longer than C, a contradiction.

II. By I, the longest circuit C is separable. Let V^* be a separable 3-vertex-cut with respect to C such that V^* separates G into V' and V''. By Lemma 3.6 one of $G[V' \cup V^*]$, $G[V'' \cup V^*]$ must be planar. Without loss of generality, assume that $G[V'' \cup V^*]$ is a planar. We choose V^* such that V'' is as small as possible.

Since C must pass through two vertices of V^* to enter V'' from V', the circuit C is the union of two paths $P' = x \cdots y$ and $P'' = y \cdots x$ contained in $G[V' \cup V^*]$ and $G[V'' \cup V^*]$, respectively, and $x, y \in V^*$. Let $V^* = \{x, y, z\}$. We construct a new graph G^* according to the following two cases:

- (a) If $z \notin V(P')$, let w be a new vertex not in G. Define G^* to be the graph obtained from $G[V'' \cup V^*]$ by adding a vertex w and three new edges wx, wy and wz.
- (b) If $z \in V(P')$, let w = z. Define G^* to be the graph obtained from $G[V'' \cup V^*]$ by adding two new edges wx and wy.

Obviously, G^* is still planar.

Let C^* be the circuit obtained from the path P'' by adding the vertex w and edges wx, wy. Since $P'' = y \cdots x = C \cap G[V'' \cup V^*]$ and C is longest circuit in G, hence, C^* is a longest circuit of G^* containing wx and wy.

Let F_1 , F_2 be two faces of G containing wx. There is an $\{F_1, F_2\}$ -Tutte circuit C^o of G^* that contains wx and wy (by Lemma 3.2).

- (i) If $|V(C) \cap V''| = 1$, then let $\{v\} = V(C) \cap V''$ and P'' must be one of $\{xvy, xvzy, xzvy\}$. Without loss of generality, let $P'' = w_1 \cdots w_t$ where $w_1 = x, w_t = y, w_2 = v$ if t = 3 and $w_3 = z$ if t = 4, (note xzvy is similar to xvzy). Since the minimum degree of G is at least four, there are at least two edges adjacent to v not contained in C. Let vu be an edge not contained in C such that $z \neq u$. Clearly $u \in V''$. Let B_C be the C-bridge of G containing u. If w_1 or w_3 is an attachment of w_1 and w_2 or w_3 is the longest path in w_4 connecting w_4 and w_4 or w_4 is the longer than w_4 is the longest path in w_4 connecting w_4 and w_4 is usually be longer than w_4 (where w_4 is the longest path in w_4 connecting w_4 and w_4 is in attachment set of w_4 . Note that every path joining w_4 and a vertex in w_4 in w_4 in attachment set of w_4 . Note that every path joining w_4 and a vertex in w_4 in w_4 in attachment set of w_4 , which contradicts w_4 being 3-connected. Hence, w_4 if w_4 or w_4 if w_4 if w_4 or w_4 i
- (ii) Since V'' is minimum and $|V(C) \cap V''| \ge 2$, so $|N(v) \cap V''| \ge 2$ for any $v \in V^*$. Let xx_i be the edge of G^* lying on the boundary of F_i and $xx_i \ne xw$ for i = 1, 2. Obviously, $xx_1, xx_2 \in E(G)$. Since C^o is an $\{F_1, F_2\}$ -Tutte circuit and because G^* is 3-connected, xx_i either lies on C^o or is a chord of C^o . Hence, $\{x, x_1, x_2\} \subset V(C^o)$ and one of $\{xx_1, xx_2\}$ must be a chord of C^o since $xw \in E(C^o)$.
- (iii) We claim that $V(C^o)\setminus\{x,y,z,w\}\neq\emptyset$. Assume that $V(C^o)\setminus\{x,y,z,w\}=\emptyset$, then by (ii), $\{x_1,x_2\}=\{y,z\}$ and since $V(C)\cap V''\neq\emptyset$, xy is a chord of C. This contradicts C being chordless. Hence, $V(C^o)\setminus\{x,y,z,w\}\neq\emptyset$.
- (iv) We claim that each non-chord bridge B of C^o must be contained in some bridge of C^* . Suppose that $I(B) \cap V(C^*) \neq \emptyset$ for some bridge B of C^o .
- (iv α) Case 1: $w \notin A(B)$ or w = z. If $w \notin A(B)$, then $z \notin I(B)$ since C^o contains edges wx and wy. If w = z, then $w = z \notin I(B)$. Hence $x, y, z \notin I(B)$ and V' adjacent only with $\{x, y, z\}$ in G will imply that A(B) is a vertex-cut that separates G into I(B) and $V(G) \setminus [A(B) \cup I(B)]$. Since $V(C^o) \setminus \{x, y, z, w\} \neq \emptyset$ (by (iii)), I(B) would be a proper subset of V''. However, I(B) intersects with C, which contradicts choice of V^* with V'' minimal.
- (iv β) Case 2: $w \in A(B)$ and $w \neq z$. Since $\{x, y, w\} \subseteq V(C^o)$ and $w \in A(B)$, we must have that $z \in I(B)$ and $wz \in [I(B), A(B)]$. Since C^o is an $\{F_1, F_2\}$ -Tutte circuit and $wz \in E(F_1 \cup F_2)$, B is a 2-attachment bridge. Since $d(z) \geqslant 3$ in $G^*, I(B) \setminus \{z\} \neq \emptyset$. Let $A(B) = \{w, u\}$. Then $U^* = \{z, u\}$ is a vertex-cut of G^* which separates G^* into $U'' = I(B) \setminus \{z\}$ and $U' = [V(G^*) \setminus [I(B) \cup A(B))] \cup \{w\}$. Since $\{x, y, z, w\} \subseteq U' \cup U^*$, V' only adjacent with $V^* = \{x, y, z\}$ would imply that V' and U'' are disconnected in $G \setminus U^*$. Hence, U^* is a 2-vertex-cut separating G into U'' and $V' \cup U' \setminus \{w\}$, which contradicts the assumption that G is 3-connected. Now we conclude our claim in all cases.

(v) By (iv), $V(C^*) \subseteq V(C^o)$ since each bridge of C^o is contained in some bridge of C^* . Moreover, $V(C^o) = V(C^*)$ because C^* is a longest circuit of G^* containing wx and wy. By (ii), $\{x, x_1, x_2\} \subseteq V(C^o) = V(C^*)$ and one of $\{xx_1, xx_2\}$ is a chord of C^* , which is also a chord of C^* in C^* . This contradicts C^* being chordless. This completes the proof. \Box

References

- [1] B. Alspach, C. Godsil, Unsolved problems, in: B. Alspach, C. Godsil (Eds.), Cycles in Graphs, Ann. Discrete Math. 27 (1985) 466 (# 8.1).
- [2] O. Ore, The Four Colour Problem, Academic Press, New York, London, 1967.
- [3] R. Thomas, X. Yu, 4-connected projective-planar graph is Hamiltonian, J. Graph Theory 62 (1994) 114–132.
- [4] C. Thomassen, Chords of longest cycles in cubic graphs, J. Combin. Theory Ser. B 71 (1997) 215-230.
- [5] W.T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956) 99-116.
- [6] C.Q. Zhang, Longest cycles and their chords, J. Graph Theory 11 (1987) 521-529.