Circuit Double Covers of Graphs

Cun-Quan "CQ" Zhang

This book was compiled using cambridge7A.cls 2010/09/09, v2.10

Contents

	Fore	eword (by Brian Alspach)	page xiii
	Fore	word (by Michael Tarsi)	XV
	Pref	Preface	
1	Circuit double cover		1
	1.1	Circuit double cover conjecture	2
	1.2	Minimal counterexamples	3
	1.3	3-edge-coloring and even subgraph cover	5
	1.4	Circuit double covers and graph embeddings	6
	1.5	Open problems	8
	1.6	Exercises	8
2	Fait	10	
	2.1	Faithful circuit cover	10
	2.2	3-edge-coloring and faithful cover	13
	2.3	Construction of contra pairs	14
	2.4	Open problems	18
	2.5	Exercises	19
3	Circuit chain and Petersen minor		21
	3.1	Weight decomposition and removable circuit	21
	3.2	Cubic minimal contra pair	22
	3.3	Minimal contra pair	25
	3.4	Structure of circuit chain	28
	3.5	Open problems	31
	3.6	Exercises	31
4	Sma	35	
	4.1	k-even subgraph double covers	35
	4.2	Small oddness	37

Contents

	4.3	Open problems	43
	4.4	Exercises	44
5	Spa	nning minor, Kotzig frames	45
	5.1	Spanning Kotzig subgraphs	45
	5.2	Kotzig frames	51
	5.3	Construction of Kotzig graphs	56
	5.4	Three-Hamilton circuit double covers	58
	5.5	Open problems	61
	5.6	Exercises	63
6	\mathbf{Str}	ong circuit double cover	66
	6.1	Circuit extension and strong CDC	66
	6.2	Thomason's lollipop method	67
	6.3	Stable circuits	70
	6.4	Extension-inheritable properties	71
	6.5	Extendable circuits	74
	6.6	Semi-extension of circuits	76
	6.7	Circumferences	79
	6.8	Open problems	80
	6.9	Exercises	81
7	Spa	nning trees, supereulerian graphs	83
	7.1	Jaeger Theorem: 2-even subgraph covers	83
	7.2	Jaeger Theorem: 3-even subgraph covers	85
	7.3	Even subgraph $2k$ -covers	87
	7.4	Catlin's collapsible graphs	89
	7.5	Exercises	93
8	Flov	ws and circuit covers	96
	8.1	Jaeger Theorems: 4-flow and 8-flow	96
	8.2	4-flows	97
	8.3	Seymour Theorem: 6-flow	101
	8.4	Contractible configurations for 4-flow	104
	8.5	Bipartizing matching, flow covering	105
	8.6	Exercises	108
9	Girt	th, embedding, small cover	112
	9.1	Girth	112
	9.2	Small genus embedding	112
	9.3	Small circuit double covers	115
	9.4	Exercises	116

viii

	Con	atents	ix
10	Compatible circuit decon	npositions	117
	10.1 Introduction	-	117
	10.2 Relation with faithful	circuit cover	118
	10.3 Counterexamples and	graph minor related results	121
	10.4 Planar graphs		122
	10.5 Dominating circuit and	d Sabidussi Conjecture	125
	10.6 Construction of contra	a pairs	126
	10.7 Open problems		130
	10.8 Exercises		131
11	Other circuit decomposit	ions	134
	11.1 Restricted circuit deco	ompositions	134
	11.2 Open problems		136
	11.3 Exercises		136
12	Reductions of weights, co	overages	137
	12.1 Weight reduction for c	contra pairs	137
	12.2 Coverage reduction wi	th fixed parity	150
	12.3 Exercises		151
13	Orientable cover		153
	13.1 Orientable double cove	er	153
	13.2 Circular double covers	and modulo orientations	157
	13.3 Open problems		161
	13.4 Exercises		162
14	Shortest cycle covers		163
	14.1 Shortest cover and dou	uble cover	163
	14.2 Minimum eulerian wei	ght	166
	14.3 3-even subgraph cover	S	168
	14.3.1 Basis of cycle s		168
	14.3.2 3-even subgrap		169
	14.3.3 (≥ 4) -even sub		171
	14.3.4 Upper bounds		171
		other major conjectures	172
	14.3.6 Fano plane and		174
		no flows, F_{μ} -flows	179
	14.3.8 Some proofs		182
	14.4 Open problems		186 187
	14.5 Exercises	•	187
15	Beyond integer $(1,2)$ -weig	ght	189
	15.1 Rational weights		190

Contents	
Contento	

	15.2	Group weights	193
	15.3	Integer weights	194
		15.3.1 Non-negative weights and Petersen minor	194
		15.3.2 Integer semi-group weights	194
		15.3.3 Small range	195
	15.4	Open problems	197
	15.5	Exercises	197
16	Pete	rsen chain and Hamilton weights	199
	16.1	Local structures	200
	16.2	Hamilton weight	202
	16.3	$\langle \mathcal{K}_4 angle$ -graphs	204
	16.4	10 0 0 I	212
	16.5		216
	16.6	1	237
		Open problems	238
	16.8	Exercises	239
App	endix	A Preliminary	243
	A.1	Fundamental theorems	243
	A.2	Even subgraphs and parity subgraphs	247
	A.3	Exercises	250
App	endix	B Snarks, Petersen graph	252
	B.1	3-edge-coloring of cubic graphs, snarks	252
		B.1.1 Parity lemma	253
		B.1.2 Snarks	253
		B.1.3 Construction of snarks	254
		B.1.4 Girths and bonds of snarks	256
	_	B.1.5 Small snarks	258
	B.2		260
	B.3		268
	B.4	Various drawings of the Petersen graph	269
App	endix	C Integer flow theory	273
	C.1	Tutte's integer flows	273
	C.2	Fundamental lemmas	277
	C.3	Exercises	279
App	endix	D Hints for exercises	285

x

Contents	xi
Glossary of terms and symbols	322
References	337
Author index	351
Subject index	354